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Cooperative Caching in Search Engines

(Supplementary material)
David Dominguez-Sal, Josep Aguilar-Saborit, Mihai Surdeanu, Josep Lluis Larriba-Pey

This document is organized as follows. Appendix A de-
scribes a model that calculates the cost to disseminate the Evo-
lutive Summary Counters described in Section IV-A. Appen-
dices B and C detail the pseudocode of ESC-placement and
ESC-search described in Section IV-B and IV-C, respectively.
Appendix D gives an example of the ESC-search algorithm.
In Appendix E, we compare the network bandwidth spent by
ESC-search (including the diffusion of the ESC-summaries)
and a broadcast protocol. Then, we describe the QA system
implemented in our experiments in Appendix F and the
parameterization of the distributed cache in G. Finally, we
report additional experiments performed for ESC-placement
and ESC-search in in Appendix H and I.

APPENDIX A
ESC SCALABILITY
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Fig. 1. ESC-summary communication cost.

The main overhead of the ESC architecture described in
this paper is the diffusion of the ESC-summaries through
the network. The ESC record the documents accessed by the
system, and hence the size of the ESC depends directly on the
total number of different documents accessed by a node (D)
and the average frequency of access to the documents (fr).
The size of a ESC-summary can be computed as the size

of the counters, multiplied by the number of distinct entries.
Since the counters are codified in binary and adapt the bits
per entry to the value stored, the size of the counters is
log2(fr+1). The size of a bloom filter (BFSize) is a function
of the probability of false positive (FP ), which can be derived
from [1]:

|BF | =
D · ln (FP )

ln(2) · ln(1/2)
.

In a distributed system of N computing nodes, the total bits
transmitted is the size of the ESC-summaries multiplied by

the number of nodes:

NetBw = |ESC − Summary| ·N

=
D · ln (FP )

ln(2) · ln(1/2)
· log2(fr + 1) ·N (1)

The previous formula enables to quantify the network
bandwidth required by the ESC in a real application. We can
simplify the previous formula taking into account that a FP
equal to 0.1 is accurate enough [2]. Additionally, since we
are interested in the worst case consumption, we impose the
restriction that all documents accessed are different (fr = 1)
to obtain the following relation:

NetBw = 4.79 · (D ·N) = 4.79 · T, (2)

where T is the global throughput of the distributed system,
measured as the number of different documents accessed.
T depicts a linear relation with the network bandwidth as
illustrated in Figure 1. We observe that the network bandwidth
does not depend directly on the number of computers of
the distributed system, but it has a linear relation with the
overall throughput of the distributed system. For example, the
ESC-summaries for a typical QA system (which accesses less
than 1k documents per query on average [3]) running in our
gigabit Ethernet setup would support more than 2.2k queries
per second (2.2 million documents accessed) with a network
usage of less than 1% in of the bandwidth usage.
For those environments with very limited network band-

width, where the broadcasting diffusion mechanism for the
ESC-summaries might not be sufficient because of the com-
munication costs, we consider that it is possible to scale the
summary communication protocol with the aid of proxies. In
this setup, the nodes are divided into teams, and each team
designates a node which will act as the team proxy. Only the
proxies exchange summaries between teams and the operations
in the cooperative cache are tunneled through the proxy of its
corresponding team. Besides, since the natural architecture of
many applications, such as search engines, typically partition
data collections into specialized subcollections [4], [5], the
partitioning into teams is easily derived from the subcollection
categorization.

APPENDIX B
ESC-PLACEMENT PSEUDO-CODE

The pseudocode of ESC-placement is listed in Algorithm 1,
where the input parameters of the algorithm are a data structure
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Input: Map<IpAddress, ESCSummary> escMap,
List<IpAddress> nodesAvailable, Document
cacheVictim

Output: IpAddress
if (cacheVictim.forwardCounter > MAXIMUM FORWARDS)
then

// Do not forward if the cache victim
exceeded the number of allowed
forwards

return NULL;
end
IPAddress mostAccessedAddr := NULL;
int mostAccessedESCValue := -1;
foreach (IpAddress currentAddr : nodesAvailable) do

// Iterate and find the most accessed
node

ESCSummary currentESCSummary :=
escMap.get(currentAddr);
int currentESCValue :=
currentESCSummary.getCount(cacheVictim.id);
if (currentESCValue > mostAccessedFrequency) then

mostAccessedAddr := currentAddr;
mostAccessedESCValue := currentESCValue;

end
end
return mostAccessed;

Algorithm 1: Pseudocode of ESC-placement
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Fig. 2. Example of ESC-Search.

that stores the ESC-summary of each node in the network,
the list of all the nodes in the network, and the cache victim
(which is least recently used). The algorithm iterates over all
the available nodes and finds the node with the largest number
of recent accesses in their corresponding ESC-summary.

APPENDIX C
ESC-SEARCH PSEUDOCODE

We show the pseudocode for the ESC-search procedure in
Algorithm 2. The input is a data structure that stores the ESC-
summary of each node in the network, the list of all the nodes
in the network, and the document identifier that has been
missed in the local cache. Initially, the nodes are sorted by
their individual probability of having the missing document
available. Then, the main loop of the algorithm adds more
nodes to query until the estimated probability of avoidable
miss is below the threshold.

APPENDIX D
ESC-SEARCH EXAMPLE

In this example, we show the steps that ESC-search (con-
figured with ε = 0.10) performs to locate documents in a

Input: Map<IpAddress, ESCSummary> escMap,
List<IpAddress> nodesAvailable, int documentId

Output: List<IpAddress>
// Sort the list of nodes by the

probability of having the document
cached in each node

List<IpAddress> L :=
nodesAvailable.sortByProbability(escMap, documentId);
int s := 0;
double probAvoidableMiss := probAvoidableMiss(escMap,
nodesToQuery);
while (probAvoidableMiss > ε ) AND s < L.size() ) do

// Update the avoidable miss probability
until we reduce it below ε

// probAvoidableMiss computes PAvMiss(s, L)
probAvoidableMiss := probAvoidableMiss(escMap, s, L);
s++;

end
// List of nodes that ESC-search selects to

query is the sublist of s nodes.
List<IpAddress> nodesToQuery := L.subList(0, s);
return nodesToQuery;

Algorithm 2: Pseudocode of the ESC-search node selec-
tion with the dynamic policy.

network with four computers. The initial state of the system
is depicted in Figure 2(a), in which N1 is computing a query
that reads “Doc B”, but it is not cached locally. The node tries
to locate the document in the cooperative cache. First, N1
sorts the node list according to the Pfreq: L={N4, N2, N3},
where N4 is the node with the highest probability of storing
a copy of “Doc B”. Then, N1 calculates the probability of an
avoidable miss when no node is queried:

PAvMiss({}, “Doc B”) =

⎡
⎣1−

∏
i∈N4,N2,N3

(
1− Pfreq(ESCS(i,d))

)
⎤
⎦

=

[
1−

1

8
·
2

8
·
3

8

]
= 0.99.

Since PAvMiss({}, “Doc B”) > 0.10 (in other words, it is
likely that the document is available in the cooperative cache),
N1 estimates the probabilities of an avoidable miss if more
nodes were queried. The first node that is included is the one
which is more likely to store the document, which is N4
because “Doc B” has been recently accessed 5 times and its
estimated miss probability is the largest:

PAvMiss({N4}, “Doc B”) =

⎡
⎣ ∏
i∈N4

(
1− Pfreq(ESCS(i,d))

)⎤⎦ ·

⎡
⎣1−

∏
i∈N2,N3

(
1− Pfreq(ESCS(i,d))

)⎤⎦

=

[
1

8

]
·

[
1−

2

8
·
3

8

]
= 0.11.

However, the probability is still above 0.10 and it is neces-
sary to extend the search to more nodes:

PAvMiss({N4, N2}, “Doc B”) =
[
1

8
·
2

8

]
·

[
1−

3

8

]
= 0.02



3

The algorithm finishes here because it estimates that the
probability of an avoidable miss is 0.02 if nodes 2 and 4
are queried, which is sufficient to satisfy our probability
miss requirements. Note that up to this point there has been
no communication among nodes because the ESC-summaries
from the other nodes are already stored in N1. In order to
retrieve “Doc B”, N1 sends a request message to nodes 2 and
4 and discovers that the document is only available in N4,
which transfers it to N1. Finally, N1 updates the values of
Pfreq according to the final result: (a) it decreases Pfreq(4) to
6
9 because the document was not found in N2 (where “Doc
B” was accessed four times; and (b) it increases Pfreq(5) to 8

9
because the document was found in N4 (where “Doc B” was
accessed five times).
Later, N1 computes another query that requests “Doc B”,

which again is not available locally as depicted in Figure 2(b).
The steps are similar to the one described for the previous
request but the algorithm finishes after only two steps:

PAvMiss({}, “Doc B”) =
[
1−

1

9
·
3

9
·
3

8

]
= 0.99

PAvMiss({Node 4}, “Doc B”) =
[
1

9

]
·

[
1−

3

9
·
3

8

]
= 0.09

Therefore, ESC-search would only query N4 but not N2.
We observe ESC-search is an algorithm that adapts to the
previous experience of the system. Given that in the previous
search the document was only available in one node, it updated
the corresponding pfreq(x) and now it is able to reduce the
number of severs queried.

APPENDIX E
SEARCH COMMUNICATION OVERHEAD

Fig. 3. Parametrization of the search model to calculate the bits sent
through network per document. Parameters: N=16, k=5, D=1, FP=0.05,
Sk=16bytes.

In this appendix, we model the amount of communication
introduced by the ESC-summaries and the ESC-search proto-
col. We compare the overhead of our proposals to a system
that broadcasts all the cooperative cache requests, such as the
ICP protocol.

For the broadcast policy, we model the number of bits
broadcasted by a node using the following analytical model:

BitSendBroadcast = N · (D · fr · Sk) ,

where N is the number of nodes in the system; D is the
number of different documents accessed in a window of time;
fr is the average number of times that each of those D
documents is requested in the same window of time; and Sk

is the size of the identifier key for each document.
We model the number of bits sent by the ESC-search policy

as:

BitSendESC = h·(D · fr · Sk)+k·(|ESC − Summary| ·N) .

The first term in the summation stands for the number of
bits involved in the requests. Hence, we substitute N in the
broadcast formula by h here, because the request is sent to
a subset of nodes. The rest of this first term is equal to the
broadcast formula. The second term stands for the number of
bits sent due to the broadcast of the ESC-summaries. Here, k
is the number of CBF in ESC, and ESC − Summary is the
size of the ESC-summaries described in Appendix A.
Parameter D affects equally the two algorithms, thus, in

our approach it is not relevant for the comparison. For ESC-
search, fr determines the size of the counters of the CBF.
In our implementation, we use the Dynamic Count Filters
explained in [6]. In DCF, the counters grow logarithmically
and dynamically with the size of the value they store.
In Figure 3, we plot our network communication model

for different setups. We plot the number of bits sent, as a
function of the average number of times that each document
is requested in the network, fr. The setups shown are for the
broadcast policy, and for an ESC-search configuration which
queries between 10% and 50% of the nodes (this includes
the requests as well as the broadcast of the ESC-summaries).
The solid area of the plot represents the broadcast of the
ESC-summaries, which is the same for the two ESC-search
scenarios.
Figure 3 confirms that if we increase the average number

of requests for the same document, the search based on
ESC-summaries is more beneficial than the broadcast policy,
even for a considerable number of nodes queried (50%).
The number of bits sent due to the requests grows linearly
with fr for both scenarios. However, the slope for ESC-
search (h) is smaller than for the broadcast policy (N ). The
number of additional bits sent because of the ESC-summary
transmissions does not grow significantly, because the counters
grow logarithmically with fr.
The results can be better understood by combining the plots

in Figures 4 and 3. According to the experimental results from
Figure 4 (where fr can be estimated to be close to 2 for
Zipfα=1.0, the location recall is over 97.5% when we query
10% of the available nodes. In Figure 3, we see that for this
configuration ESC-search achieves a four-fold reduction of the
transmissions. If we wish to achieve even higher accuracy
(according to Figure 4 more than a 99.7% location recall)
it is possible to query 50% of the nodes and still save a 40%
of the bandwidth (see Figure 3).



4

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  10  20  30  40  50  60  70  80  90  100

Lo
ca

tio
n 

R
ec

al
l

Percentage of nodes queried

Linear + Dynamic
Linear + Static

Plain + Dynamic
Plain + Static

Summary-cache

(a)

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  10  20  30  40  50  60  70  80  90  100

Lo
ca

tio
n 

R
ec

al
l

Percentage of nodes queried

Linear + Dynamic
Linear + Static

Plain + Dynamic
Plain + Static

Summary-cache

(b)

Fig. 4. Location recall for the ESC-search algorithms. The query set sent to
the system follows (a) Zipfα=0.59 and (b) Zipfα=1.0.
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Furthermore, current network technologies only achieve the
highest bandwidths with big network packets, and the ESC-
summary is a compact structure that can be transferred in
a sequence of packets that get the best performance from
the network. ESC-search is also more adaptable when there
is temporary congestion in the network because the refresh
summary rate and the number of count filters (τ and k,
respectively) can be adapted. Considering the effect of the
parameter changes in ESC (see Appendix G), ESC-search can
temporarily delay the refresh of the summaries and/or reduce
the number of requests until the peak is over without a large
performance drop.
Last but not least, the size of the keys (Sk) also affects

the amount of data sent through the network. The size of
the request message grows proportionally to Sk. However,
since ESC-summaries hash the keys to a count filter, the key
size does not affect the size of ESC-summaries. Distributed
systems which can handle huge key sizes, such as the 64KB
keys supported by Bigtable [7], will have even larger traffic
reduction thanks to the decrease in the number of transmis-
sions.

APPENDIX F
QUESTION ANSWERING SYSTEM IMPLEMENTATION

The QA system implemented in this paper (depicted in
Figure 7) uses a traditional architecture consisting of three
computing blocks linked sequentially [8]: Question Processing
(QP), Passage Retrieval (PR), and Answer Extraction (AE).
We describe the components next.
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Fig. 7. QA system composed of three sequential blocks QP, PR and AE. PR
and AE can request and store data into the cache using the cache manager.

Question Processing: the QP component detects the type of
the expected answer for each input question. We model this
problem as a supervised Machine Learning (ML) classification
problem: (a) from each question we extract a rich set of fea-
tures that include lexical, syntactic, and semantic information,
and (b) using a corpus of over 5,000 questions annotated with
their expected answer type, we train a multi-class Maximum
Entropy classifier to map each question into a known answer
type taxonomy [9].

Passage Retrieval: our PR algorithm uses a two-step query
relaxation approach: (a) in the first step all non-stop question
words are sorted in descending order of their priority using
only syntactic information, e.g., a noun is more important
than a verb, and (b) in the second step, the set of keywords
used for retrieval and their proximity is dynamically adjusted
until the number of retrieved passages is sufficient, e.g., if
the number of passages is zero or too small we increase
the allowable keyword distance or drop the least-significant
keyword from the query. The actual information retrieval (IR)
step of the query relaxation algorithm is implemented using
a Boolean IR system [10] that fetches only passages that
contain all keywords in the current query. Once the query
relaxation step completes, the extracted passages are ranked
in descending order of a relevance score computed based on
the density and frequency of the keywords in the passage
texts [3]. PR concludes with the elimination of the passages
whose relevance is below a certain threshold. Thus, the system
avoids applying the next CPU-intensive module for passages
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that are unlikely to contain a good answer.

Answer Extraction: the AE component extracts candidate
answers using an in-house Named Entity Recognizer [11],
and ranks them based on the lexico-syntactic properties of
the context where they appear. We consider as candidate
answers all entities of the same type as the answer type
detected by the QP component. Candidate answers are ranked
using a formula inspired from [12], which calculates for each
candidate answer a combination of different heuristics that
measure the keywords order and density, such as the distance
between keywords or the number of keywords that are found
in the same order in the query and in the text. The candidate
answers with the highest score are returned to the user as the
list of answers.

It is beyond the purpose of this paper to survey qualitative
aspects of QA. It is however important to mention that most
QA research was motivated by the evaluations organized
by the Text REtreival Conference (TREC) [13]. The local
QA system used in this paper replicates some of the most
successful architectures that were proposed in this context [3],
[9], [14]–[16]. We evaluated the quality of the answers from
this QA system in a recent international evaluation with results
in the state-of-the-art. More details on the system architecture
and the evaluation framework are available in [17].
QA systems are excellent solutions for very specific infor-

mation needs, but the additional functionality provided, i.e.,
query relaxation and answer extraction, is not computationally
cheap: using the set of questions from previous QA evaluations
we measured an average response time of 75 seconds/question.
The fully fledged factoid QA system1 used in this paper
distributed its execution time as follows: 1.2% QP, 28.8%
PR, and 70.0% AE. This brief analysis indicates that QA
has two components with large resource requirements: PR,
which needs significant I/O to extract passage content from
the underlying document collection, and AE, which is CPU-
intensive in the extraction and ranking of candidate answers.
From a data processing perspective, our QA system imple-

ments a two layer architecture: first, we extract the relevant
content from documents that are lexically close to the input
question, and second, we semantically analyze this content
to extract and rank short textual answers to this question,
e.g., named entities such as person, organization, or location
names. Because both these blocks are resource intensive,
the former in disk accesses and the latter in CPU usage,
we allocate a local pool of memory to each stage that is
managed with an LRU policy. For both caches, the cache
unit is a full document, which is never partitioned in our
testbed. Each memory pool stores the data for a fixed number
of documents, and each document is retrieved from the caches
by its corresponding document identifier. Cached entries in PR

1A factoid question answering system is able to respond queries whose
answer corresponds to a concrete and objective answer such as a person name
(Eg: Who discovered the Penicillin?), a date (Eg: When was the Penicillin
discovered?) or a location (Eg: Where was born the Penicillin discoverer?).
Other types of questions which are not factoid are for example the generation
of lists of results (Eg: List me medicaments that contain Penicillin.) or
descriptions (Eg: Why is the Penicillin effective against bacteria?).

store the raw document, and cached entries in AE store the raw
document plus its natural language analysis. Since the data for
PR is a subset of the data for AE, the information associated to
a document is only in one of the cache pools. Once a document
is accessed in PR or AE, it is promoted to the corresponding
pool for PR or AE, respectively, removing the LRU entry of
the pool to make room (see [18] for further details). In addition
to the local LRU policy, the cache manager implements the
cooperative cache operations described in Section IV of the
paper (request/response and forward) for each of the two
caches. Therefore, the cached data can be transferred from
one node to another, and there may exist multiple copies of a
document in a given time. In our experiments, we account for
the total hit rate of both caches.

APPENDIX G
ESC PARAMETRIZATION

This appendix estimates the parameters necessary to con-
figure ESC. Our objective is to find the adequate values for τ
and k, where τ is the refresh time between two CBF updates,
and k is the number of CBF in the list. Our parametrization
is based on the total monitoring time of the cache window:
t = τ · k, which is a derived parameter from the other two.

Discussion of t: This parameter sets the time history that
the ESC is monitoring. If this value is too large, entries that
have not recently been accessed (in other words, that currently
are not in the distributed cache) will be taken into account. If
we set t too small, the algorithm will not be aware of the
documents that are still in the caches of the remote nodes. In
Figure 5, we plot the hit rates for three different cache sizes,
and for several values of t fixing k to 7. The selection of t is
sensitive to the size of the cache: for each cache size we see
that the best value of t changes, and increases with the cache
size. The reason is that with bigger caches, the entries can be
kept more time in memory and consequently ESC must reflect
a longer history.
We set t to the average time that it takes a new entry

to be replaced from the cache. This way, ESC monitors the
documents which have been accessed in the last τ · k time
units, and that will probably be in the cache of the node.
We can simulate the time it takes to obtain v different values
(where v is the number of entries that can fit in cache) from
a random variable which follows the same distribution as the
query requests. We propose to set t to:

t =
DiffDocsCacheSize(v,δ)

Throughput
. (3)

Where DiffDocsCacheSize(v,δ) is the total number of
document requests following a distribution δ to fill a cache of
size v, and Throughput is the average number of documents
accessed by the system per sec.
We have evaluated Equation (3) for the experiments reported

in Figure 5 and marked the values of t with a cross on each of
the three plots. The theoretical results are close to the optimal
values. Moreover, the experiments were done with an empty
cache at the beginning of the execution, so, the experimental
optimal hit rate would move even closer to the theoretical
prediction if the caches had been warmed up beforehand.
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Discussion of k: This parameter determines the number of
CBFs that an ESC contains. In other words, for a given t, if
we set a large k, then few documents will be monitored during
the slice of time assigned to a CBF (τ = t

k
), leading to a more

accurate summary of that time slot. However, a larger k means
that summaries will be generated more frequently, yielding a
larger network traffic. It seems that a tradeoff between both
situations would be the best solution. In Figure 6, we show
the results for an experiment where we plot the hit rate with
a fixed t and a variable value of k. We observe that values of
k larger or equal to 5 obtain hit rates close to the asymptotic
hit rate.

APPENDIX H
ADDITIONAL EXPERIMENTS WITH ESC-PLACEMENT

Experiment 1 (Cache size): In this experiment, we use a
query distribution Zipfα=1.0, and we test several cache sizes.
Figure 8 shows the hit rate of the cooperative caching algo-
rithms. The largest cache size tested, which corresponds to
a cache size of 13000 documents, has enough room to store
approximately 12% of the requested documents in a node. We
plot two lines for each cooperative caching algorithm: we use
large points for the global hit rate and smaller ones for the
local hits. The figure shows that the improvement of all the
cooperative caching algorithms grows logarithmically towards
the hit rate obtained with an infinite cache, 0.92. The local
cache policy is far below the cooperative caching algorithms
for all the tested configurations. Besides, the local cache hit
rate improves at a slower rate than the cooperative caching
global hit rate.
Similarly to the previous experiments, ESC is the best

algorithm for all the configurations, and BPR is very close
for the configurations with the largest cache size. However,
as in the previous algorithm the BPR locality is smaller
because BPR is not aware of the contents of the nodes. ESC
is the algorithm with the best cache locality, with a relative
improvement of up to 30% over other algorithms such as
EA or BPR. We observe that for small caches it is more
difficult to keep the balance between a good local hit rate
and the cooperative cache, and here we observe that the ESC-
summaries contain essential information to improve the data
placement.

Experiment 2 (Speedup): Figure 9(a) shows the speedup of
the QA system as the number of processors grows from one to
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Fig. 9. Speedup of the ESC-placement, compared to a linear speedup (a).
Speedup per node added (b). The question distribution follows a Zipfα=0.59.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

α = 0.59 α = 1.0 α = 1.4 

H
it 

ra
te

Zipfian query distribution

Local
ESC-Placement

Local & Hash
ESC-Placement & Hash

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

α = 0.59 α = 1.0 α = 1.4 

H
it 

ra
te

Zipfian query distribution

(a) Hit rate

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

α = 0.59 α = 1.0 α = 1.4 

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Zipfian query distribution

Local
ESC-Placement

Local & Hash
ESC-Placement & Hash

(b) Normalized throughput

Fig. 10. Performance comparison with hash based policies.

sixteen computing nodes. The speedup is measured relatively
to the system with a local cache in a single computer. The
performance gain is above linear (which is shown as a solid
line as reference) and increases with the addition of new
computers. Note that the speedup increase is above linear
due to the Zipf question distribution, which favors repeated
questions, and due to our distributed caching algorithm, which
efficiently manages these questions. In our experiments, the
round robin algorithm balances the load in the cluster reason-
ably well because the number of queries is not too small, and
all the queries were generated following the same probability
distribution. So, even with just a local cache, a result not too
far from a linear speedup would be expected. The right plot
of Figure 9(b) shows the speedup per node for the left plot of
the same figure. The benefit rates per added node are: 1.01 for
two nodes, 1.14 for eight, 1.19 for twelve, and 1.2 for sixteen
nodes. The reason for this increase is that a larger number of
computers implies that more cooperative memory is available.
Consequently, an effective cooperative caching algorithm can
store more documents and increase the hit rates. In the case of
16 nodes, the progression of the benefit ratio (1.19 compared
to 1.2) is smaller because we are getting closer asymptotically
to the maximum hit rate achievable with an infinite cache.

Experiment 3 (Query locality): Round robin policies guar-
antee that all nodes compute the same number of queries,
which yields a similar load in all nodes. However, round
robin does not enforce the query locality because it selects the
destination node for the queries independently of the query
content. A cache policy that groups all the similar queries
(which access to overlapping document subsets) in a single
node will intuitively improve the hit rate of the system.
In this experiment, we implement a hash based distribution

policy that aims at a better query locality. It computes a hash
over the input text of the query, and then applies a modulo
operation on the number of nodes, where each different output
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is assigned to one node. This hash policy aims at a better
locality in contrast to the query distribution performed by
round robin, which aims at a balanced workload.
Figure 10(b) depicts the hit rate of the hash based policy ver-

sus the round robin, and confirms that the hash based policies
achieve better hit rates than their corresponding round robin
alternatives. The reason is that the initial hash distribution
reduces by the number of nodes (16 in this case) the number of
different queries that one node can receive, and thus, the cache
is more effective because of this more reduced query set. We
note that the hash policies are more effective, with respect to
the hit rate of their corresponding non-hashed alternative, for
the skewed distributions (α = 1.0 and 1.4) than for α = 0.59.
Although both local and ESC-placement improve their hit rate
over round robin policies we observe that ESC-placement with
hash is still significantly better than the hash policy plus a local
cache.
However, the throughput of the hash-based policies is not as

good as in our previous experiments with round robin because
the hash policies do not take into account the load balance in
the cluster. In Figure 10(b), we compare the throughput of the
round robin configuration against the hash based policies. We
observe that for none of the policies with a hash, we obtain
a better throughput than for the previous experiments with
ESC-placement.
In Figure 11, we plot the effective usage of each node

in the network, which indicates the percentage of time that
each node is doing useful computation, i.e. the percentage of
time that the node is not idle. The closer to one are the bars,
the more balanced is the cluster. Here, we observe a clear
indicator of the unbalances in the system with hash policies in
Figures 11(b-c), where we find a few nodes above the average
load in the cluster. On the other hand, the round robin policy
(Figure 11(a)) presents a very balanced workload, though
its hit rate, as we previously mentioned, is more limited.
Therefore, we find that for an optimal throughput there is a
compromise between the data locality and the load balancing
of the system. For the interested reader in this tradeoff, we
refer to [19] where we propose and analyze load balancing
strategies that take into account the cache state of a distributed
system in order to maximize the throughput of the system.

Experiment 4 (Collection preprocessing): In our previous
experiments, the QA system analyzed the documents with
NLP tools during the computation of the AE block on the fly.
Another alternative approach, which saves CPU time during
the query computation, is to preprocess the whole collection of
documents with NLP tools and store the processed documents
on disk. Then, the AE module does not need to compute
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Fig. 12. Normalized throughput for system that has a preprocessed version
of the NLP analysis of a QA system.

the document analysis, but loads it from secondary storage,
unless it is cached in the main memory. In this experiment,
we compare our cooperative caching proposals for such an
architecture.
In Figure 12, we compare the throughput of our previous

system to one that keeps a copy of all the documents prepro-
cessed in disk. We observe that for our hardware setup the
throughput increases, if we are able to preprocess the data
rather than to analyze it on the fly as we did in the previous
experiments. Anyway, we observe that ESC-placement is
still faster than the local policy for preprocessed collections
because ESC-placement is able to retrieve documents from re-
mote memory, which reduces the traffic from disk. This result
indicates that ESC-placement is also adequate in environments
where we are able to preprocess the collection beforehand or
even implement caches on disk that can be much larger than
in memory caches.
The configuration in this experiment obtained the largest

throughput among our tests. Nevertheless, we note that al-
though preprocessing might be valid for some scenarios, it
may not always be feasible or advisable for QA. Some of the
main reasons are the following. (a) Document collections are
huge and are always growing. For example, Google recently
quantified the number of different web sites crawled as more
than one trillion, which makes it prohibitive to preprocess
all of them with NLP tools. (b) Many queries appear only
once in a real workload of a search engine because of the
long tail of the Zipf distribution, and thus, it might not be
worth to preprocesses the whole dataset given the amount
of unique queries and the cost to process each document
(that is significantly more expensive than building current IR
inverted indexes). For instance, Baeza et al. found that 50%
of the queries received in the Yahoo UK web search engine
during a whole year are unique [20]. (c) If the processed data
is stored on the disks, then the bottleneck of the system is
the I/O from disks in order to supply data for both PR and
AE computing blocks. Although in our configuration, (which
is able to compute two threads simultaneously) it is faster
to preprocess documents and store them on disk, this might
not hold in architectures with a larger degree of parallelism.
Besides, the current trend in the last years is that the number of
CPUs is growing at faster rate than the disks are. For example,
a general purpose processor, such as UltraSparc T2, can run
64 threads simultaneously [21], and a GPU, such as Nvidia
GeForce GTX 295, has 480 CUDA cores [22]. This trend
suggests that reanalyzing documents might be faster (except
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for the very complex processes) than reading preprocessed data
(thus, more bytes) from a disk cache.

APPENDIX I
ADDITIONAL ESC-SEARCH EXPERIMENTS

Experiment 5 (Broadcast comparison): In this experiment,
we perform a detailed comparison of the ESC-search algorithm
against the broadcast protocol. We note that if the network
is not overloaded, the use of broadcasting achieves better
performance than any other algorithm because its location
recall is 1. Figure 13 plots the execution time of the search
algorithm compared to the broadcast baseline. Even if all
nodes are interconnected with a fast network that supports
broadcast, which is our hardware setup, we see that the
execution time of the best ESC-search configuration only
increases the broadcast approach by about 3%. However, the
probabilistic algorithm only queries approximately a fifth of
the total number of nodes. The ESC-search is more scalable
because it reduces the stress on the network, and so it is
possible to add many more computers than with the broadcast
search implementation. Finally, the limited number of remote
requests of ESC-search make it a viable candidate if a few
computing nodes do not share the same LAN.
Additionally, the configuration of the probabilistic algorithm

is easier and more adaptable to the query distribution. In the
static approach, the selection of h is a blind choice made by
the administrator of the system, and may become a bad choice
if the query distribution changes. On the other hand, the prob-
abilistic approach is based on the usage frequencies, which
can be extracted on the fly for any query distribution. The
selection of ε for the probabilistic approach is straightforward
and independent from the query log, because it is based on
the probability of an avoidable miss.

Experiment 6 (Influence of ESC-placement in ESC-search):
In this experiment we compare the location recall of ESC-

search when it is combined with ESC-placement versus a
system where ESC-search is combined with a placement
strategy without forwarding. ESC-search and ESC-placement
rely on the same information, provided by the ESC-
summaries, hence we study here the correlation between the
placement and the location decisions based on ESC.
We observe in Figure 14 that both scenarios share a similar

pattern: a steep increase of the slope that converges up to
almost a perfect recall when more than one third of the nodes
are queried. The location recall for a small number messages
is also large enough for most applications: it is over 99%
once the system queries approximately 20% of the nodes on
average. We also observe that the recall when ESC-placement
is activated is better than when no forwarding policy is
applied. This happens because ESC-search together with ESC-
placement, versus a system where ESC-search is combined
with a placement strategy without forwarding, implement
complementary policies on top of the same data structures:
(a) ESC-placement prefers nodes with more local accesses
to the corresponding document, and (b) ESC-search queries
first the same nodes with the largest number of accesses to
the given document. In other words, ESC-placement tends to
forward cache entries to the nodes that will be inspected first
by ESC-search.
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