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Abstract

Proper recognition and handling of temporal informa-
tion contained in a text is key to understanding the flow
of events depicted in the text and their accompanying cir-
cumstances. Consequently, time expression recognition and
representation of the time information they convey in a suit-
able normalized form is an important task relevant to sev-
eral problems in Natural Language Processing. In partic-
ular, such an analysis is largely significant for Information
Extraction (IE), Question Answering (QA) and Automatic
Summarization (AS). The most common approach to time
expression recognition in the past has been the use of hand-
made extraction rules (grammars), which also served as the
basis for normalization. Our aim is to explore the possibil-
ities afforded by applying machine learning techniques to
the recognition of time expressions. We focus on recogniz-
ing the appearances of time expressions in text (not nor-
malization) and transform the problem into one of chunk-
ing, where the aim is to correctly assign Begin, Inside or
Outside (BIO) tags to tokens. In this paper, we explain the
knowledge representation used and compare the results ob-
tained in our experiments with two different methods, one
statistical (support vector machines) and one of rule induc-
tion (FOIL). Our empirical analysis shows that SVMs are
superior.

1. Time Expression Recognition: An Overview
1.1. Problem Description

Chunking refers to any problem or task in NLP (natural
language processing) which involves segmenting (i.e. iden-
tifying the boundaries of) the occurrences in a text of a cer-
tain type of entities. Chunking of femporal expressions is
a part of the more complex task called temporal expression

recognition and normalization (TERN), in which the aim
is to identify the mentions in a text of expressions that de-
note time, and to capture their meaning by writing them in a
canonical representation. A common way to represent these
temporal expressions in text —as well as other entities of in-
terest in information extraction, like named entities, events
or relations— is to employ XML tags with convenient at-
tributes to further qualify the entity (see Figure 1).

But even <TIMEX2 VAL="1999-07-22">
last Thursday </TIMEX2>, there were
signs of potential battles <TIMEX2
VAL="FUTURE_REF" ANCHOR_DIR="AFTER"
ANCHOR_VAL="1999-07-22"> ahead
</TIMEX2>.

Figure 1. XML annotation of time expressions
using TIMEX2 tags

The TIMEX standard sets out guidelines for annotating
and normalizing mentions of time expressions. These and a
full description of temporal expressions can be found in [2].

There are two separate problems in the TERN task, one
of identifying the extension of the mentions of temporal ex-
pressions in text (i.e. chunking) and the complementary
problem of normalizing the value of the temporal expres-
sion. Here we are only concerned with the first of these two
problems. Contrary to what it may at first seem, temporal
expressions come into a wide variety of forms ([12]):

e Fully-specified time references: 16th June 2006, the
twentieth century, Monday at 3pm.

e Expressions whose reference depends on the con-
text: the previous month, three days after the meeting,
February the following year.

e Anaphoric expressions and expressions relative to the



time when the expression is written: that day, yester-
day, currently, then.

e Durations or intervals: a month, three days, some
hours in the afternoon.

e Frequencies or recurring times: monthly, every other
day, once a week, every first Sunday of a month.

e Culturally dependent time denominations: Easter, the
month of Ramadan, St. Valentine.

e Fuzzy or vaguely specified time references: the future,
some day, eventually, anytime you so desire.

1.2. Relevant Literature

The TERN (Temporal Expression Recognition and Nor-
malization) task has gathered attention only recently within
the broader framework of Information Extraction (IE), and
references to it in the research literature are still sparse.
Temporal expression extraction has been most often ap-
proached as an intermediate step towards tackling the more
difficult problems of event extraction and characterization,
extraction of temporal relations (e.g. before, after, includes,
...), temporal ordering and timestamping of events, and
temporal reasoning ([1], [6]).

Grammars continue to be the strategy most commonly
resorted to for time analysis in documents (see [9] for an
example of a grammatical treatment of recognition and
co-reference resolution of time expressions). Boguraev &
Ando (2005) [1] describe a hybrid approach to the extrac-
tion of time expressions, events and temporal relations,
which combines grammatical parsing with machine learn-
ing. First, a cascade of finite-state grammars is used to tar-
get temporal expressions and to extract attributes for their
normalization; separately, a combination of token, POS
(part-of-speech), syntax and context, in addition to word
profiling from unannotated corpora, are used as features in a
risk-minimization classifier for event and temporal expres-
sion recognition.

Here we are rather interested in the more automatic treat-
ment of chunking afforded by methods such as support
vector machines (SVM) and inductive logic programming
(ILP). Perrig (2005) [6] reports the results of various exper-
iments using SVMs (Vapnik, 1995 [11]) for the recognition
of time expressions, events, and temporal relations. The
precision, recall and F-measure results are given for sev-
eral configurations of features. Hacioglu et al. (2005) [3]
have also applied SVMs for automatic chunking of time ex-
pressions in English and Chinese. Their approach involves
combining proper token features (token, POS, syntactic,
semantic and contextual) with external sources of knowl-
edge (the output from third-party external classifiers used
as additional features for the SVM classifier), some of them

human-made rules, in order to boost the classification per-
formance of the SVMs.

There is virtually no previous work that uses ILP for the
recognition of temporal expressions. A relational approach
for automatically learning rules for information extraction is
described in Turmo & Rodriguez (2002) [10]. Their system
EVIUS employs Inductive Logic Programming —in partic-
ular, FOIL— to automatically extract IE rules (for any type
of entity, not just time expressions) in multiple domains,
but they do not perform an explicit evaluation for temporal
expression recognition. In this paper we introduce a con-
sistent comparison of SVMs and ILP using the same corpus
and the same feature sets.

The rest of this paper is organized as follows. Section 2
describes the scheme used to represent chunks and the set
of token features we employ to tackle the time expression
chunking problem with machine learning. Next, Section 3
introduces the two alternative approaches we have consid-
ered for this problem: support vector machines (statistical),
and the FOIL ILP system (rule induction). How training
and classification takes place is described for each of the
two approaches. Section 4 is concerned with our experi-
ments with SVMs, acting on several of the learning method
parameters, and with FOIL. The results obtained with each
method are discussed and compared in this section. Finally,
Section 5 summarizes the conclusions.

2. Data Representation and Features

The chunking-related problems have traditionally been
represented as the multiclass classification problem of as-
signing BIO tags to each token in a sequence of text (Fig-
ure 2). The tags stand for Begin (B), Inside (I) and Out-
side (O), and are enough for delimiting non-overlapping,
non-recursive chunks (i.e. chunks that neither appear inside
the boundaries of the extension of another larger chunk, nor
overlap with another chunk). In this kind of data represen-
tation, the features used for classification refer to the indi-
vidual tokens themselves.

But/O even/O last/B Thursday/I ,/O
there/O were/O signs/O of/O potential/O
battles/O ahead/B ./O

Figure 2. Chunk annotation of time expres-
sions using BIO tags

An alternative segment-based representation involves
considering sequences of consecutive tokens (i.e. seg-
ments), as opposed to individual tokens, and tagging each
segment as either being a chunk of the desired type or
not. In this type of representation, each segment of up to



a bounded length is assigned a distinct identifier and clas-
sification makes use of features that exploit relationships
among the tokens in the segment (e.g. the order in which
they appear), apart from features about the tokens them-
selves. We have chosen to use the token-level BIO rep-
resentation because of three reasons: first, the complexity
(in terms of volume of training data) involved in using BIO
tags is much lower than for segments; second, the BIO rep-
resentation has the potential to correctly tag chunks of any
length, contrary to segments, for which an upper bound on
the length must be fixed for tractability; and third, time ex-
pressions appearing inside of another larger time expression
(which could be detected using a segment representation),
although existing, are very infrequent.

Both training and classification involve a previous step
of document preprocessing: tokenization and extraction of
features for each token. The text is first tokenized (seg-
mented into individual tokens) and then a number of fea-
tures are computed for each token. Tokens correspond nor-
mally with individual words, but also include punctuation
marks —which are separate tokens— and special constructs
like the genitive “’s”. The features used for token classifi-
cation are:

e Lexical: The token form itself, the token in lowercase,
the token that results from removing all letters from the
token (e.g. 3 for “3pm”), the token that results from
removing all letters and numbers (e.g. - - - for 1995-
07-12).

e Morphological: The POS (Part Of Speech) tag (for in-
stance, NN for noun, JJ for adjective, CD for cardinal
number, MD for modal verb, ...).

e Syntactic: The tag of the basic syntactic chunk which
the token belongs to (e.g. I-NP for inside noun phrase,
B-VP for beginning of verb phrase, ...).

e Format features: These are flags that indicate if the
token has certain format characteristics (isAllCaps
like “THU”, isAllCapsOrDots like “1.B.M”, isAllDig-
its like “2004”, isAllDigitsOrDots like “10.24”, and
initialCap like “February”).

e Features that indicate if the token belongs to certain
specific classes of words. These features are computed
as a function indicating membership to a closed list of
tokens, which defines the class: isNumber (e.g. one,
two, ten, ...), isMultiplier (e.g. hundred, thousands,
...), isDay (e.g. monday, mon, saturday, sat, ...) and
isMonth (e.g. january, jan, june, jun., ...).

e Contextual features: All of the previous features, but in
reference to the tokens occurring in a certain window
to the left and right of the current token.

e The target classification: The BIO tags for a window
of tokens in the left context (we call these dynamic
features). We use the gold BIO tags in training and the
predicted tags during testing.

The part-of-speech tags are computed using a linguistic
processor, the TnT tagger'. The syntactic chunks are ob-
tained using the YamCha toolkit, a general purpose tagger
based on SVMs, trained with a model for English based on
Penn TreeBank corpus. The rest of features are computed
programmatically, and arranged into a tabular format.

3. Approaches

We have considered two different approaches to deal
with the problem of time expression recognition, each cor-
responding to a different machine-learning paradigm. The
first method considered is statistical and uses Support Vec-
tor Machines ([11]) as the underlying machine learning al-
gorithm. SVMs are discriminative models that find the
maximum-margin hyperplane that separates examples from
two classes (positive and negative) and which, thanks to
the use of kernel functions, allow for non-lineal separating
surfaces. The second method belongs to the rule-induction
paradigm, more specifically Inductive Logic Programming.
We use FOIL ([8]), an ILP system, in order to learn clas-
sifiers to assign the B, I and O tags respectively. FOIL
builds a hypothesis in the language of first-order logic pred-
icates that attempts to describe the form of positive exam-
ples, based on heuristic search. The results of these two
approaches are compared in Section 4.
3.1. Statistical Approach: the YamCha
Tagger

For our experiments we have used the YamCha (Yet An-
other Multi-purpose CHunk Annotator) toolkit? ([4]), a free
implementation of a multipurpose chunker that uses SVMs
as the underlying algorithm for chunking and classifica-
tion of chunks (more specifically, YamCha employs the free
TinySVM library®). YamCha takes as input a tabular file
where each line corresponds to the features of a token, as
shown in Figure 3 (features other than the token form, POS
tag, syntactic chunk and correct classification are omitted
for simplicity).

At least, the first column must correspond to the token
form (i.e. the “words”), and the last column indicates the
target classification for that token (also known as the golden
tag). The golden tags of the tokens in the context window
can be used as dynamic features when training.

Thttp://www.coli.uni-saarland.de/ thorsten/tnt/
Zhttp://chasen.org/ taku/software/yamcha/
3http://chasen.org/ taku/software/TinySVM/



FORM POS tag SYNTAX BIO tag
POS: -3 But CcC O O
POS: -2 even RB B-ADVP O
POS: -1 last JJ B—NP B-TIMEX
POS: O Thursday NNP I-NP I-TIMEX
POS: +1 , , O O
POS: +2 there EX B-NP 0
POS: +3 were VBD B-VP 0

Figure 3. Sample tokenized text with features (input to YamCha)

A SVM classifier requires that examples be represented
as a vector of numeric features (that is, if the usual kernels
involving dot products are to be used). Many features com-
monly used in NLP learning tasks are categorical (e.g. the
token form and variations thereof like lowercase and pat-
terns, the POS tag, the syntactic tag, ...); and moreover,
some can have a domain of considerably many values —
even several thousands—. Therefore, a transformation that
maps categorical features into sets of binary features be-
comes a necessary step prior to training, which is performed
internally by YamCha. The resulting feature vectors are
very high-dimensional and sparse, with most binary fea-
tures denoting the presence of a value of one of the original
categorical features. With the use of contextual features, the
number of dimensions grows accordingly.

SVMs are in principle binary classifiers, whereas ours is
the multiclass classification problem of assigning a B, I or
O tag to each token. YamCha supports both the one-vs-rest
(training one binary classifier per class in the data, treating
examples of one class as positive and the rest as negative),
and one-vs-one strategies (training one binary classifier per
each pair of classes, to discriminate between examples of
the two). We chose to use one-vs-rest classification, which
yields 3 classifiers, the same number as one-vs-one classi-
fication would in our particular case ((3) = 3). One often
cited reason to employ one-vs-one classification has to do
with efficiency, since in training classifiers to distinguish
among examples from two particular classes in a pairwise
fashion, the size of the training set for each individual clas-
sifier is greatly reduced, which diminishes overall training
time. In our case with only 3 classes, the additional gain
is not significant. Instead, we use one-vs-rest classifica-
tion because our ultimate objective is to compare, under the
same assumptions, the classification performance of SVMs
with that of a rule-learning system whose knowledge repre-
sentation is in the form of logic predicates (FOIL). A one-
vs-one model does not have an obvious parallel in the hy-
pothesis language of FOIL since, not being a discriminative
learner, it attempts to reconstruct the set of positive cases
for a single class rather than learn to distinguish among ex-
amples of two classes.

The combination of the margin outputs from each of the

3 classifiers in order to produce a coherent tag assignment is
also handled internally by YamCha. The dynamic features
(tag assignment for context tokens) are generated “on the
fly” as classification proceeds. YamCha then uses dynamic
programming based on the last NV tokens (beam search) in
order to select the final assignment of tags which maximizes
the certainty score for the sequence of tokens (see [4] for
details).

3.2. Rule-Induction Approach: FOIL

Inductive Logic Programming (ILP) refers to algorithms
that extend traditional attribute-value concept learners (e.g.
decision trees), by exploiting the relations among the exam-
ples’ features and among examples themselves, and express
them in the form of first-order logic predicates with vari-
ables. Target concepts are represented in the form of first-
order predicates (also called relations). Hypotheses are def-
initions for each of the target predicates p;, in the form of a
set of logic clauses (rules) p;(X1,...,X,) < L1,..., L,
where each of the L; are literals. A set of training exam-
ples £, consisting of positive examples (€T C &), which
satisfy the target predicate p; and, optionally, negative ex-
amples (£~ C &), is supplied for the learner to induce a
logic program. Each example is represented as a ground
fact of the target predicate, i.e. as an n-tuple of constants
< Z1,...,T, > that define an assignment of values for
the predicate arguments. In addition, the learner may be
provided with background knowledge predicate definitions
q;,» which serve as a vocabulary for the learner, in terms
of which the hypothesis for target predicates p; are con-
structed. The hypothesis must be consistent with both the
training examples and the background knowledge. Refer to
[5] for an in-depth discussion of ILP techniques, algorithms
and various ILP systems in existence.

FOIL is an empirical (non-interactive, non-incremental)
ILP system developed by Quinlan ([7], [8]). Arguments of
relations in FOIL are typed, which means they take values
over a particular domain. Representation of the background
knowledge predicates ¢; is restricted to extensional defini-
tions of predicates in the form of a list of ground facts. Ex-
amples and, optionally, counterexamples for each of the tar-



get predicates must also be supplied as ground facts. From
these elements, FOIL returns an hypothesis consisting of
a set of function-free Horn clauses for each of the target
predicates, whose body may contain as literals L; any of
the following: predicates from the background knowledge,
any of the target predicates, a binding predicate (X; = X),
a predicate specifying an ordering relation for ordered types
(X; < Xj), or any of the former in the negated form not L;.

Although in order to harness the full expressive power of
the hypothesis language of FOIL (that is, first-order logic
predicates), one should use a knowledge representation that
takes into account possible relations among examples, we
employ a propositional knowledge representation that mim-
ics the one used with YamCha and which is explained in
Section 2. The purpose of trying out this propositional ap-
proach is to compare how well ILP performs for this task in
comparison with the SVMs by using the same corpus and
the same set of features.

In order to transform this attribute-value representation
of tokens into logic predicates that can be used as input to
FOIL, each individual token is assigned an identifier. These
token identifiers function as constant arguments for logic
predicates. All logic predicates take a single argument: a to-
ken identifier (therefore we refer to this approach as propo-
sitional, because the predicates do not really express rela-
tions). Each possible feature of a token will be represented
as a predicate of the background knowledge, with positive
examples for the predicate being the identifiers of the to-
kens that have that feature. This way, we could have ground
facts of the background knowledge such as those in Fig-
ure 4. Also, there will be three target predicates, which
correspond to the three possible classifications of a token,
namely: begin_time_exp (X), inside_time_exp(X) and out-
side_time_exp(X), which take a token identifier as argument.
We used FOIL to train three individual classifiers to learn
the B, I and O tag assignments respectively. As for the test-
ing, we took advantage of the built-in inference engine of
PROLOG.

Since we have trained three classifiers with FOIL inde-
pendently of each other (one for each possible tag), each
classifier provides an individual yes/no response for a to-
ken, which has to be combined with the responses from the
remaining two in order to reach an agreement on the final
tag assignment. Also, to maintain consistency, two restric-
tions apply: an I (inside) tag cannot follow an O (outside)
tag, and the first token in a sentence cannot carry an I tag.
We used the confidence of a rule as a measure of the evi-
dence supporting each possible decision in order to estab-
lish a consensus among the classifiers’ outputs:

#(AAB)
4B

where #(A A B) refers to the number of tokens (cases)

conf(A < B)=

that satisfy both the antecedent (B) and the consequent (A)
of the rule, and # B refers to the number of tokens that sat-
isfy the antecedent.

This quantity is computed for each clause by taking into
account the ground facts (i.e. predicate facts derived from
the tokens’ features) about tokens from the training set. The
consensus among the classifiers (B, I and O) makes use of
the confidences of the rules that support each of the indi-
vidual decisions. Because a "yes’ response from a classifier
could be based on several rules (that is, the token in question
could satisfy the antecedents of one or several clauses), each
one having a different confidence value, we have tried two
different approaches to computing the confidence of each
possible decision (the results of both are reported in Section
4 below):

1. Considering the confidence of the best clause among
those satisfied by the token.

2. Considering the sum of the confidences of all the
clauses satisfied by the token.

The procedure for reaching the final agreement on the
classification of a token is performed locally based only on
information about the token in question and the tag decided
upon for the previous token (thus, it is a form of greedy
inference):

o If the three individual classifiers give a 'no’ response,
the token is assigned the O tag (which is largely the
most often occurring tag).

e If one of the possible classifications is I (inside) and
the token either appears at the start of a sentence, or
the classification of the previous token was a O, the
tag I is discarded from the options to consider —as it
would create an inconsistent tag sequence— and the
final classification is based on the remaining options
alone.

e In any other case, the token is assigned the tag corre-
sponding to the classification decision with the highest
confidence.

One subtle detail regarding the testing stage is that, un-
like in the training stage, it is not acceptable to take the cor-
rect classification tag for the context tokens in order to gen-
erate the dynamic features of the token. In order to produce
coherent testing results, we need to generate this dynamic
contextual features “on-the-fly”: the corresponding ground
facts about the previous tokens are added to the PROLOG
base of facts as the classification takes place.



form_last (tok100) .
form_Thursday (tok101) .
POS_NNP (tok101) .
syn_.I_NP (tok1l01) .
context_rl_form_-Thursday (tokl100) .
context_11_B_NP (tokl101).

// token 101 is

// token 100 is ’'last’

"Thursday’

// token 101 is a proper noun

// token 101 is inside a noun phrase

// token right of tok1l00 is ’Thursday’

// token left of tokl0l is at the start of a noun phrase

Figure 4. Token features as ground facts of background knowledge predicates in FOIL

4 Experiments

For our experiments, we use the corpus of the ACE
2005 competition (Automatic Content Extraction) for train-
ing and testing. This corpus has the mentions of time ex-
pressions manually annotated using TIMEX tags. The com-
position of the corpus is 550 documents distributed in five
categories (newswire, broadcast news, broadcast conversa-
tions, conversational telephone speech and weblogs), con-
taining 257000 tokens and approx. 4650 time expression
mentions. In all the experiments described in the following
sections, the data partitions used for training and test con-
tain a heterogeneous mixture of documents from the five
categories, in equal proportions. Of the 257K tokens, 8809
tokens (a 3.42%) belong to time expressions.

Regarding our statistical approach with SVMs, we have
carried out experiments in which we altered different pa-
rameters of learning: the feature set, the degree of the poly-
nomial kernel, and the length of the context window. The
motivation behind these additional experiments, whose re-
sults are developed below, was to quantify how variations in
these three factors affected the classification performance.
For this process, the ACE 2005 corpus was split in five par-
titions. Special care was taken in order to obtain balanced
partitions with regard to the number of documents from
each of the five categories. For the optimal configuration we
repeat the experiments using 5-fold cross-validation, where
five different models are constructed reserving each time a
different partition for testing and using the remaining four
for training. The rest of experiments do not use cross-
validation owing to the rather long time required to train
one SVM model for classification (approx. 8 hours with
YamCha running in a computer cluster). Instead, for the
remaining experiments which show the effects of altering
parameters of learning, we have trained a single model for
each different configuration, using the same data partitions
for training and test as in Round 4 of the cross-validation
(because the results for that round were closest to the aver-
age).

Lastly, we conducted an experiment with FOIL using the
same data and feature set, according to the approach de-
scribed in Section 3.2 above. In this case, due to reasons
of temporal complexity, we did not perform a full cross-

validation as above but a single round of training and test.

In all of the following tables, the columns precision, re-
call and F; measure refer to these three performance met-
rics as they are commonly understood in information ex-
traction. The fourth column, accuracy, is a per-token cor-
rectness measure:

Precision: The rate of returned temporal expressions that
are correctly identified (i.e. correctly tagged divided
by total tagged).

Recall: The rate of existing temporal expressions that are
correctly identified (i.e. correctly tagged divided by
those that should have been tagged).

F; Score: It is the harmonic mean of the two previous val-
ues: Fy = 2X Precision X Recall
* £'1 = "(Precision+Recall) *

Accuracy: The percentage of correct BIO tag assignments
predicted by the classifier at the token level (i.e.
whether the predicted tag coincides with the target

tag).

The precision, recall and F; scores are calculated in terms of
full time expressions: only exact matches where the bound-
aries of the expression are correctly identified are counted
as hits. Because the accuracy is computed over all tokens
including the O tokens, which are easier to classify and sig-
nificantly more common than B or I tokens, accuracy values
are larger than F, precision, or recall scores

4.1. Optimal SVM Model

We report first the experiments with YamCha using the
optimal combination of features, learning algorithm param-
eters and context window length.

Table 1 shows the results of performing five rounds of
5-fold cross-validation. For this experiment, the entire ACE
corpus was split in 5 partitions, balanced with regard to the
number of documents from each category (see Section 4
above). In each round, 4 of these 5 partitions were used as
training data and the remaining one was reserved for testing
the learned model. We employed the full set of token fea-
tures described in Section 2, a polynomial kernel of degree
2, and a context window of 2 tokens left and right (only the
left context is used for the dynamic feature).



PREC

RECALL |

F, [ ACC |

Round 1 81.33

75.23 | 78.16 | 98.68

Round 2 77.74

70.46 | 73.92 | 98.60

Round 3 75.92

71.22 | 73.50 | 98.47

Round 4 80.05

73.71 | 76.75 | 98.65

Round 5 80.34

72.54 | 76.24 | 98.66

AVERAGE | 79.08

72.63 | 75.71 | 98.61

STD DEV. 2.20

1.91 1.97 | 0.17

Table 1. 5-fold cross-validation in SVM with all features, quadratic kernel and a 2-token context

4.2. Effects of Varying the Kernel Degree

Table 2 shows the gain in performance achieved by vary-
ing the degree of the polynomial kernel. The increments
between brackets indicate the difference with respect to the
reference configuration: the quadratic kernel. As seen, the
quadratic kernel achieves the best performance, and the best
tradeoff between results and complexity. An explanation
for this fact is that the lineal kernel is too simple to capture
the complexity of this problem, and produces underfitting;
whereas the cubic kernel is too complex, adds too many
complex, unnecessary combinations of features and, hence,
overfits. Besides, empirically, the quadratic kernel is known
to produce the best results in NLP chunking and classifica-
tion tasks.

4.3. Effects of Incremental Feature Sets

In order to study which types of features are relevant, we
have designed three incremental models that use increas-
ingly complex sets of features. The features used in each of
these models are as follows:

e Model 1: the token form and the token form in lower-
case.

e Model 2: Model 1 + POS tags + format features
(isAllCaps, isAllCapsOrDots, isAllDigits, isAllDigit-
sOrDots, initialCap) + the token form removing alpha-
betic characters + the token form removing alphanu-
meric characters.

e Model 3: Model 2 + syntactic chunk tags + classes of
words (isNumber, isMultiplier, isDay, isMonth).

Table 3 shows the effect of incrementally using a richer
feature set. The increments between brackets indicate the
difference with respect to the reference configuration: the
maximal feature set (model 3). The results indicate that all
of the features initially considered contribute to classifica-
tion performance. A context window of 2 tokens left and
right and a quadratic kernel were used in all three models.

4.4. Effects of Increasing the Context Win-
dow

And last, Table 4 shows the results obtained from in-
creasing the size of the context window used for the con-
textual features. It can be observed that passing from a con-
text of 2 tokens to the left and right to a context of 3 tokens
in each direction goes in detriment of recall. Enlarging the
context window causes the system to overfit on the train-
ing corpus, which, as expected, has a negative effect on the
testing partition.

4.5. FOIL

We collected the set of clauses produced by FOIL for the
three target predicates into one file of rules for PROLOG.
In a similar manner, we produced a file of PROLOG facts
which contained ground facts about the features of the to-
kens in the test partition. Next, we ran a PROLOG program
to output our classifier’s guess (that is, a B, I or O tag) for
each of the test set tokens in sequence, alongside the cor-
rect tag for each token in a tabular file. And lastly, we used
a PERL script that computes the precision, recall and Fy
measures to evaluate the results.

In the evaluation of FOIL, we did not conduct cross-
validation on this experiment due to the high temporal cost
of training a model with FOIL for our full data set. As our
aim is to compare the results with the performance of the
SVM on equal terms, instead of using a reduced training set,
we conducted a single experiment with FOIL which uses
the optimal configuration achieved with the SVM: the full
set of features as in model 3 above, and a context window
of 2 tokens left and right. The comparison is with respect
to Partition 4 of the 5-fold cross-validation experiment with
YamCha.

Table 5 shows the precision, recall and F; values
achieved by the classifiers trained with FOIL. We include
the results obtained with both strategies for computing the
confidence of a classification decision (’best’ indicates the
confidence of the best clause is taken, ’sum’ indicates that
the sum of confidences of all the satisfied clauses is taken).



KERNEL \ PREC \ RECALL \ F, \ ACC \

pol. lineal 72.39 (-7.66) | 70.08 (-3.63) | 71.21 (-5.54) | 98.25 (-0.40)
pol. quadratic 80.05 73.71 76.75 98.65

pol. cubic 81.30 (+1.25) | 71.73 (-1.98) | 76.21 (-0.54) | 98.65 (+0.00)

| FEATURES | PREC | RECALL | F, | ACC |
Model 1 80.00 (-0.05) | 66.89 (-6.82) | 72.86 (-3.89) | 98.56 (-0.09)
Model 2 | 80.10 (+0.05) | 71.73 (-1.98) | 75.68 (-1.07) | 98.60 (-0.05)
Model 3 80.05 73.71 76.75 98.65

Table 2. Effects on performance of varying the degree of the kernel (SVM)

Table 3. Effects on performance of incrementally extending the feature set (SVM)

4.6. Comparison of results

In Table 5, the quantities in bold correspond to the best
result obtained by FOIL (with each of the two strategies for
computing the confidence), and the numbers in parentheses
are the score differences of the SVM classifier with respect
to FOIL. It can be observed that the precision values are
close in both cases, but there is consistently a drop in the
recall value of FOIL with respect to that achieved by the
SVM. This loss in recall damages the F; figures of FOIL
considerably. We believe that this low recall of FOIL is due
to an implicit bias of the learning method that makes it more
susceptible to committing overfitting than, for instance, an
SVM, provided that the two classifiers were trained with
exactly the same data and feature sets.

The considerably higher recall of the SVMs can be ex-
plained by the fact that SVMs are max-margin classifiers.
Furthermore, SVMs are able to work with many combina-
tions of features at the same time, and find the best combi-
nations without a penalty in efficiency, which confers them
higher generalization ability regardless of the high dimen-
sionality of the data. This is possible thanks to the use of
the “kernel trick”. Other algorithms, such as FOIL, rely on
heuristics in order to select the best features and make the
dimensionality of the data manageable, which has a nega-
tive impact on overall generalization.

4.7. Performance issues

Training has been conducted in a cluster of workstations
with Pentium 4 3.20 GHz and 4 GBytes of RAM. Training
a model with YamCha took approximately 8 hours, with
slight variations from 6 to 12 hours depending on the de-
gree of the polynomial kernel, the subset of features and the
context window length.

We encountered that the amount of time that FOIL re-
quires to train a model for a large dataset and number of
features (as it is our case with the ACE corpus and the

feature set described above) renders it impractical for real
use. Training 3 classifiers (for the B, I and O tags) with
FOIL took over three and a half weeks for each —the three
of them were trained simultaneously—. FOIL’s temporal
complexity is of order O(||B|| x ||ET U E7]| x A), where
IB]| is the number of background knowledge predicates,
|ET UE|| is the number of examples and counterexam-
ples for the target predicate and A is the maximum arity
(number of arguments) of a predicate. Our training set
consists of 192182 tokens, 3613 of which are tagged as
B (start of temporal expression), 3187 as I (inside tempo-
ral expression) and 185364 as O (outside). In the propo-
sitional knowledge representation, the number of domain
predicates other than the 3 target predicates (i.e. predicates
corresponding to possible features of the individual tokens)
is 159175, and all predicates have arity 1 (the only variable
is the token identifier).

Nevertheless, we attempted to speed up the training of
our model with FOIL, at the expense of filtering predicates
from the background knowledge (thus reducing the num-
ber of available options for FOIL to construct literals for
clauses) that had few positive examples, and reducing the
number of counterexamples for the target predicates using
an ad hoc measure of relevance of a counterexample with
respect to the set of positive examples. We achieved some
substantial reduction in training time in this way, but at the
expense of considerable penalty in the classification results:
a decrease of 8% in both precision and recall.

5. Conclusions

We have evaluated the performance achieved by the
SVM and FOIL, and have observed that, while the precision
scores lie within an acceptable range, the SVM significantly
outperforms FOIL with respect to recall. The explanation is
that SVMs are max-margin classifiers that generalize better
on sparse corpora, such as the one used in this paper. We
saw also that the execution time of FOIL for training a full



WINDOW | PREC | RECALL | F, [ ACC |
1. +1 | 7447(-5.58) | 72.83 (-0.88) | 73.64 (-3.11) | 98.41 (-0.24)
2.2 80.05 73.71 76.75 98.65
3.+3 | 8030 (+0.25) | 71.29 (-2.42) | 75.52 (-1.23) | 98.59 (-0.06)

Table 4. Effects of increasing the context window (SVM)

| CLASSIFIER | PREC | RECALL | F, \ ACC

FOIL (best) 77.58 52.15 62.37 97.95

FOIL (sum) 81.32 50.28 62.13 97.98
SVM 80.05 (-1.27) | 73.71 (+21.56) | 76.75 (+14.38) | 98.65 (+0.67)

Table 5. Performance of the propositional approach with FOIL vs. a SVM classifier

model under the assumptions that occupy us in this prob-
lem renders its usage impractical, and that simplifying the
training data set in order to reduce execution time carries a
non-negligible penalty associated in both precision and re-
call.

Our optimal model for temporal expression chunking
with SVM yields a F; score of 75.71%. The best perfor-
mance in a task like time expression recognition, which has
an important syntactic component and, to a lesser extent,
semantic, will still be achieved by a system that integrates
handwritten knowledge of some kind (these systems consis-
tently achieve F; scores above 90%). The main drawback
of using grammars is that grammar rules have to be tailored
specifically to the task at hand. This is one of the reasons
why we wanted to try out a purely statistical method such as
SVMs and observe the classification performance that such
a method affords.

Two potentially positive aspects of SVMs, regarding
their application to our problem, are: first, SVM’s resis-
tance to overfitting, even in the presence of very high di-
mensional feature spaces (as those that arise typically in
NLP problems); second, the fact that SVMs allow one to
freely experiment with different sets of features, and that
by the use of non-linear kernels one can entrust the learning
method with automatically finding interesting combinations
of these features.
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