On the Role of Information Retrieval and
Information Extraction in Question Answering
Systems

Dan Moldovan! and Mihai Surdeanu?®

! Human Language Technology Research Institute, University of Texas at Dallas
moldovan@seas.smu.edu
2 Language Computer Corporation, Dallas, Texas
mihai@languagecomputer.com

Abstract. Question Answering, the process of extracting answers to
natural language questions is profoundly different from Information Re-
trieval (IR) or Information Extraction (IE). IR systems allow us to locate
relevant documents that relate to a query, but do not specify exactly
where the answers are. In IR, the documents of interest are fetched by
matching query keywords to the index of the document collection. By
contrast, IE systems extrat the information of interest provided the do-
main of extraction is well defined. In IE systems, the information of
interest is in the form of slot fillers of some predefined templates.

The QA technology takes both IR and IE a step further, and provides
specific and brief answers to open domain questions formulated natu-
rally. This paper presents the major modules used to build IR, IE and
QA systems and Shows similarities, differences and possible trade-offs
between the three technologies.

1 Information Retrieval

The three main technologies used to extract information from large collections
of documents are Information Retrieval (IR), Information Extraction (IE), and
Question Answering (QA). In this paper we first review briefly the state-of-
the-art in each field, compare the similarities and differences between the main
building modules, and then explore possible ways of combining the three tech-
nologies and performing trade-offs for various application domains.

The goal of Information Retrieval (IR) systems is to extract documents that
best match a query. The two main tasks in IR are document indexing and search-
ing. Indexing is the task of representing a document by its key features for the
purpose of speeding up its finding when a query is invoked. There were many
indexing schemes explored, but the most commonly used are based on word
stemming and its enhancements. Term weighting is an indexing technique that
gives a degree of importance to a word in a description. Word proximity, es-
pecially adjacency, is frequently used to Capture some of the linguistic rela-
tions between words. Some advanced indexing methods take into consideration

M.T. Pazienza (Ed.): SCIE 2002, LNAI 2700, pp. 129-[[47, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

130 D. Moldovan and M. Surdeanu

compound terms and phrases, that is groups of words that collectively have a
syntactic role. These are detected with shallow syntactic parsing and semantic
analysis.

The goal of searching is to locate the most relevant documents and to rank
them in Order of decreasing match with a query. Thus, a similarity measure
needs to be introduced for this. Similarity algorithms are usually based on term
weighting which is by far the most important feature that controls the IR pre-
cision. There are two types of weights, initial weights and relevance weights.
The first are used when a searcher presents a query to the system, while the
later is used after the documents are retrieved for the purpose of ordering them.
The most common type of initial weighting is inverse document frequency (idf)
which assigns weights to the terms in a query such that the weights are in inverse
Proportion to the frequency of occurrence of these terms in the document col-
lection, namely, low frequency terms are likely to point to a relevant document.
An improved method is tf.idf weighting, which multiplies the term frequency
weights by the collection frequency weight.

Relevance feedback is the name given to methods that try to modify queries
automatically, that is to re-weight queries by adding or deleting keywords, or
expanding keywords. Conceptual indexing has been studied by [Woods 1997,
Mihalcea 2001]. The idea is to index documents based on concepts not words.
This involves word sense disambiguation, a Problem that has not been solved
yet for open text.

Documents
Indexed
Documents
Query Query Output
! Formulation I Search ! Documents

Fig. 1. A generic IR System Architecture

Figure 1 shows a high level block diagram of a generic IR architecture. Search
is done by using an inverted file, which contains a dictionary file and postings
file. The dictionary file contains lists of keywords, classification terms, journal
titles that can be used as keywords. A count is associated with each entry in the
dictionary file, it specifies how frequently a key occurs. The postings file contains
a series of lists one for each of the entries in the dictionary file. Each such list

On the Role of Information Retrieval and Information Extraction 131

contains the identifiers of all documents that contain a given term. This enables
the IR system to search only those documents that contain query terms. The
posting file also stores the term location which facilitates proximity search.

Inverted files provide rapid access to large document collections, but they
require large storage overhead; index file may be twice as large as the document
file.

Once the initial query terms are submitted they are looked up in the dictio-
nary file to determine whether they have been used to index any of the documents
in the collection. If they have, their frequency of occurrence in the database is
extracted. Each entry in the dictionary file has a pointer to the corresponding
list in the posting file. These lists are further processed to check operators such
as AND, OR, NEAR and others. After the logic operations have been performed,
a new list that contains the identifiers of all relevant documents is formed. Usu-
ally several iterations are necessary to return an appropriate size output file.
The user has now access to the documents and if not satisfied another query is
formulated.

2 Information Extraction

Information Extraction systems attempt to pull out information from documents
by filling out predefined templates. The information typically consists of entities
and relations between entities like who did what to whom, where, when and
how. IE got a boost with the MUC (Message Understanding Conference) in late
1980’s and early 1990’s. The MUC IE systems focused on one domain at a time;
for example joint ventures, terrorism in Latin America, management successions,
and others. Users of such systems had to specify their information need in the
form of a template with Slots that the system had to fill automatically.

Figure 2 shows templates filled by the CICERO information extraction on
the MUC-6 management succession domain [Harabagiu and Surdeanu 2002]. A
template can store information directly extracted from the document, e.g. orga-
nization names such as “Fox Inc.” and most importantly can store information
about the inter-template relations. As shown in Figure 2 each SUCCESSION_EVENT
template stores one or more links to IN_AND_OUT templates, which describes the
actual succession event: who seized/acquired the management position, with
further links to PERSON and ORGANIZATION templates.

A typical IE system architecture is a cascade of modules, like those in Figure
3. A preferred method of implementation for these modules is finite state au-
tomata [Hobbs et al. 1996, Harabagiu and Surdeanu 2002]. The tokenizer is the
first module of the IE system. The task of the tokenizer is to break the document
into lexical entities (tokens). Generally, a token is a word or a punctuation sign,
but in some cases it may be a word fragment. For example, the word “U.S.A.”
is broken into six tokens: “U”, “” “S” «” “A” and “.”. It is the task of the
next module to identify the above sequence as a complex word representing an
abbreviation of “United States of America”.

132 D. Moldovan and M. Surdeanu

The Lexicon module identifies words and complex words that have lexical and
semantic meaning. This is done by inspecting both dictionaries and gazetteers.
Dictionaries contain open-domain lexico-semantic information, e.g. “house” is
an artifact, or to a lesser extent domain-specific information, e.g. “mail bomb”
is a kind of bomb. Gazetteers typically store well-known entity names, such as
locations, e.g. “Dallas” is a city in the state of “Texas” part of the country
“United States of America”.

<TEMPLATE-9301190125-1> :=

DOC_NR: "9301190125"

CONTENT: <SUCCESSION_EVENT-9301190125-1>
<SUCCESSION_EVENT-9301190125-2>
<SUCCESSION_EVENT-9301190125-3>
<SUCCESSION_EVENT-9301190125-4>
<SUCCESSION_EVENT-9301190125-5>
<SUCCESSION_EVENT-9301190125-6>
<SUCCESSION_EVENT-9301190125-7>

<SUCCESSION_EVENT-9301190125-1> :=

SUCCESSION_ORG: <ORGANIZATION-9301190125-1>

POST: "chief executive officer"

IN_AND_OUT: <IN_AND_0UT-9301190125-1>

<IN_AND_0UT-9301190125-2>

VACANCY_REASON: REASSIGNMENT

COMMENT: "Joseph M. Segel OUT, Barry Diller IN as

chief executive officer of QVC Network Inc."
<IN_AND_0UT-9301190125-2> :=

I0O_PERSON: <PERSON-9301190125-1>
NEW_STATUS: IN

ON_THE_JOB: UNCLEAR

OTHER_ORG: <ORGANIZATION-9301190125-2>
REL_OTHER_ORG: OUTSIDE_ORG

COMMENT : "Barry Diller IN"

<ORGANIZATION-9301190125-2> :=

ORG_NAME: "Fox Inc."

ORG_TYPE: COMPANY
<ORGANIZATION-9301190125-1> :=

ORG_NAME: "QVC Network Inc."

ORG_TYPE: COMPANY
<PERSON-9301190125-1> :=

PER_NAME: "Barry Diller"

PER_ALIAS: "Diller"

PER_TITLE: "Mr."
<PERSON-9301190125-3> :=

PER_NAME: "Joseph M. Segel"

PER_ALIAS: "Segel"

PER_TITLE: "Mr."

Fig. 2. Sample templates for the MUC-6 management succession domain

The Preprocessoridentifies simple lexical entries that are not stored in lexicon
or gazetteers. Some of the items identified by the preprocessor are: phone num-
bers “1-(800) 88-7777”, money “$4.75”, dates “December 25”, times “8:30am”,
measures such as “l10kg”, “one hundred degrees”, and others.

The Name Entity Recognizer is one of the most important modules in IE. It
assigns lexical features to words or groups of words such as locations, organiza-
tions, persons, addresses, and others. Proper names are particularly useful for
extraction systems since they point to objects about which we need to identify
properties, relations, events. The technique is to use capitalization if available.

On the Role of Information Retrieval and Information Extraction 133

[Tokenizer]
[Dictionaries]\A[{;]
Lexi
[Gazeteers] / {eXl;on
[Preprocessor]

<~

[Named—Entity Recognizer]

<7

[POS Disambiguation]

<~

[Phrasal Parser]

e

[Coreference]

(-

[Pattern Matching]

-

[Discourse]

e

[Merging]

Fig.3. An IE System Architecture

Some of the most frequently used methods are Hidden Markov Models and fi-
nite state automata patterns. With the help of dictionaries these techniques are
able to recognize that “John Smith” is a proper name, and “John Hopkins” is a
University; or that “Austin Ventures” is a Company, “Austin, Texas” is a City
and “Austin Thomas” is a name. Machine learning methods are sometimes used
to train the Name Recognizer in a new domain. NE-recognition benefits by mor-
phological analysis by looking up in a dictionary for all morphological variations
of words.

Part of Speech Tagging is useful for subsequent text analysis stages. This
involves specifying the part of Speech of each word. POS taggers are rule-based
or statistical and achieve an accuracy around 95%. The Parser identifies simple
noun phrases (NP), e.g. “the fast red car”, verb phrases (VP), e.g. “is being
observed daily”, and also particles that may be significant in subsequent text

134 D. Moldovan and M. Surdeanu

analysis. In many MUC systems only shallow parsing was used. It was more
important to recognize NP or VP and less important to solve the attachment
of prepositional phrases, or close subordination. The reasons for avoiding full
syntactic parsing is the time taken by parsers, especially if sentences are long,
and the possible errors that a parser may introduce.

Coreference Resolution is the task of determining that a noun phrase refers
to the same entity as another noun phrase. This involves equating various forms
of personal proper names, for example “President Bush”, “George Bush”, “the
43rd President of US”, etc. There are other more complex forms of coreference
such as definite or indefinite noun phrase and pronoun coreference that some IE
systems attempt to solve. There is need for temporal coreference resolution in
which “today” from one document has to be related to “a week ago” in another
document, but few systems have implemented this.

Pattern Matching is the basic method for extracting domain-specific in-
formation to fill the template slots. Considerable effort is put in developing
domain-specific patterns that represent events specific to a domain. Typically
these are subject-verb-object (SVO) patterns that are tailored to a domain
by specifying semantic constraints that each component must meet. For exam-
ple “Greenspan makes a recession” fits the pattern <human, causes, entity>
while “Greenspan makes a mistake” does not fit the above pattern. This is de-
cided by checking semantic constraints that the subject, verb, and object would
have to satisfy collectively for pattern matching.

Domain Coreference is typically part of a discourse analysis module and
attempts to fill empty template slots, which can be retrieved from the context
of the pattern previously recognized. Consider the following example from the
“natural disaster” domain:

...flooding has become a way of life in Guerneville in the last several
years. This gas station along the Russian River gets hit nearly every
time. ...

The domain pattern recognition module matches the <disaster, destroys,
artifact> pattern over this text. Based on the semantics associated with this
pattern, the following template is constructed:

<NATURAL_DISASTER> :=
AMOUNT_DAMAGE: "this gas station"
LOCATION: "Russian River"

Note that due to the inherent complexity of the natural language not all tem-
plate slots can be covered through patterns. In this example a very important
slot: the disaster type (“flooding”) is not recognized by the pattern. In such sit-
uations the domain coreference module inspects the pattern context for possible
fills for the empty slots. In the above example the resulting template is:

<NATURAL_DISASTER> :=
DISASTER: "flooding"
AMOUNT_DAMAGE: "this gas station"
LOCATION: "Russian River"

On the Role of Information Retrieval and Information Extraction 135

Merging is the task of combining and consolidating the information that
refers to the same event by combining the templates that refer to the same
events. Merging is a multi-step process. For example, first the templates that
refer to the same events found in one sentence are merged, then the same is
done at the document level, then at the collection level.

3 Question Answering

A QA system accepts questions in natural language form, searches for answers
over a collection of documents and extracts and formulates concise answers. As
shown in Figure 4, the three essential modules in almost all QA systems are
question processing, document retrieval, and answer extraction and formulation.

- Documents
S
—— Answer
Query Query p» Document -
o P Extraction & B Answer

Formulation Retrieval
Formulation
A A A

Resources

Fig. 4. A generic QA System architecture.

Just like MUC has boosted the IE technology, the Text Retrieval Conference
(TREC) QA track has stimulated considerable interest and research in Question
Answering in the last few years. In 2001, the US Government has initiated a new
research program in QA, called Advanced Quest ion Answering for Intelligence
(AQUAINT).

Since modern QA systems are open domain, the performance of a QA system
is tightly coupled with the complexity of questions asked and the difficulty of
answer extraction. For example, in TREC many systems were quite successful at
providing correct answers to simpler, fact-seeking questions, but failed to answer
questions that required reasoning or advanced linguistic analysis [Voorhees 1999).
From the combined set of 1460 evaluation questions, 70% of the participating
systems answered successfully questions like Q1013: “Where is Perth?”, but none
could find a correct answer to complex questions such as Q1165: “What is the
difference between AM radio stations and FM radio stations?”

In order to put the QA technology into perspective, we first provide a broad
taxonomy of QA systems. The taxonomy is based on several criteria that play an
important role in building QA systems: (1) linguistic and knowledge resources,

136 D. Moldovan and M. Surdeanu

(2) natural language processing involved, (3) document processing, (4) reason-
ing methods, (5) whether or not answer is explicitly stated in a document, (6)
whether or not answer fusion is necessary.

Classes of Questions
Class 1. QA systems capable of processing factual questions

These systems extract answers as text snippets from one or more documents.
Often the answer is found verbatim in a text or as a simple morphological vari-
ation. Typically the answers are extracted using empirical methods relying on
keyword manipulations.

Class 2. QA systems enabling simple reasoning mechanisms

The characteristic of this class is that answers are found in snippets of text, but
unlike in Class 1, inference is necessary to relate the question with the answer.
More elaborate answer detection methods such as ontologies or codification of
pragmatic knowledge are necessary. Semantic alternations, world knowledge ax-
ioms and simple reasoning methods are necessary. An example is Q198: “How
did Socrates died?” where die has to be linked with drinking poisoned wine.
WordNet and its extensions are sometimes used as sources of world knowledge.

Class 3. QA systems capable of answer fusion from different documents

In this class the partial answer information is scattered throughout several doc-
uments and answer fusion is necessary. The complexity here ranges from as-
sembling simple lists to far more complex questions like script questions, (e.g.
“How do I assemble a bicycle?”), or template-like questions (“What management
successions occurred at IBM in the past year?”).

Class 4. Interactive QA systems

These systems are able to answer questions in the context of previous interactions
with the user. As reported in [Harabagiu et al. 2001], processing a list of questions
posed in a context involves complex reference resolution. Unlike typical reference
resolution algorithms that associate anaphorae with a referent, the reference
imposed by context questions requires the association of an anaphora from the
current question with either one of the previous questions, answers or their
anaphora.

Class 5. Speculative questions

The characteristic of these systems is their ability to answer speculative questions
similar to:

“Is the Fed going to raise interests at their next meeting?”;

“is the US out of recession?”;

“is the airline industry in trouble?”.

Since most probably answers to such questions are not explicitly stated in
documents, simply because events may not have happened yet, QA systems from
this class decompose the question into queries that extract pieces of evidence, af-
ter which answer is formulated using reasoning by analogy. The resources include
ad-hoc knowledge bases generated from mining text documents clustered by the

On the Role of Information Retrieval and Information Extraction 137

question topic. Associated with these knowledge sources are case-based reason-
ing techniques as well as methods for temporal reasoning, spatial reasoning and
evidential reasoning.

Table 1. Distribution of TREC questions

| Type [Number (%)]
Class 1 (factual) 985 (67.5%)
Class 2 (simple-reasoning) 408 (27.9%)
Class 3 (fusion - list) 25 (1.7%)
Class 4 (interactive - context) | 42 (2.9%)
Class 5 (speculative) 0 (0.0%)

Table 1 illustrates the distribution of TREC questions into the question
classes. In addition to 1393 main-task questions collected from TREC-8, TREC-
9 and TREC-2001, there are 25 list questions (e.g., “Name 20 countries that
produce coffee.”) and 42 context questions (e.g., “How long was the Varyag?”;
“How wide?”).

QA System Architecture

First we identify the main modules of a QA system architecture, then present
some architectural features seen in advanced QA systems. The model boundaries
may change as some systems rely more on one method than another. There
are ten modules presented below, the first five modules correspond to question
processing, the next two modules perform document and passage processing,
and the last three modules perform answer processing.

M1 The individual question words are spell-checked. Words like Volkswangen
and Niagra are expanded into their spelling variants Volkswagen and Niagara.
If necessary, questions such as Q885: “Rotary engine cars were made by what
Company?” are rephrased into a normalized form where the wh-word (what)
appears at the beginning, e.g. “What company were rotarg engine cars made
by?”.

M2 The input question is parsed and transformed into an internal representa-
tion capturing question concepts and binary dependencies between the concepts
[Harabagiu et al. 2000]. Stop words (e.g., prepositions or determiners) are iden-
tified and removed from the representation. For illustration, the representation
for QOI13: “How much could you rent a Volkswagen bug for in 1966%” captures
the binary dependency between the concepts rent and 1966.

M3 The mapping of certain question dependencies on a WordNet-based answer
type hierarchy disambiguates the semantic category of the expected answers
[Pasca and Harabagiu 2001]. For example, the dependency between How much
and rent for Q013 is exploited to derive the expected answer type Money. The
answer type is passed to subsequent modules for the identification of possible
answers (all monetary values).

138 D. Moldovan and M. Surdeanu

M4 Based mainly on part of speech information, a subset of the question con-
cepts are selected as keywords for accessing the underlying document collection.
A passage retrieval engine accepts Boolean queries built from the selected key-
words, e.g. Volkswagen AND bug. The retrieval engine returns passages that
contain all keywords specified in the Boolean query. Therefore keyword selection
is a sensitive task. If the wrong question word (e.g. much) is included in the
Boolean query (much AND Volkswagen AND bug), the retrieval is unsuccessful
since the passages containing the correct answers are missed.

M5 Before the construction of Boolean queries for actual retrieval, the selected
keywords are expanded with morphological, lexical or semantic alternations. The
alternations correspond to other forms in which the question concepts may occur
in the answers. For example, rented is expanded into rent.

M6 The retrieval engine returns the documents containing all keywords specified
in the Boolean queries. The documents are then further restricted to smaller
text passages where all keywords are located in the proximity of one another.
Each retrieved passage includes additional text (extra lines) before the earliest
and after the latest keyword match. For illustration, consider QOO5: “What is
the name of the managing director of Apricot Computer?” and the associated
Boolean query Apricot AND Computer AND director. The relevant text fragment
from the document collection is “Dr Peter Horne, managing director of Apricot
Computers”. Unless additional text is included in the passages, the actual answer
Peter Horne would be missed because it occurs before all matched keywords,
namely director, Apricot and Computer.

M7 The retrieved passages are further refined for enhanced precision. Passages
that do not satisfy the semantic constraints specified in the question are dis-
carded. For example, some of the passages retrieved for Q013 do not satisfy the
date constraint 1966. Out of the 60 passages returned by the retrieval engine for
QO13, only two passages are retained after passage post-filtering.

M8 The search for answers within the retrieved passages is restricted to those
candidates corresponding to the expected answer type. If the expected answer
type is a named entity such as MONEY, the candidates ($1, USD 520) are iden-
tified with a named entity recognizer. Conversely, if the answer type is a DEFI-
NITION, e.g. Q903: “What is autism?”, the candidates are obtained by matching
a set of answer patterns on the passages.

M9 Each candidate answer receives a relevance score according to lexical and
proximity features such as distance between keywords, or the occurrence of the
candidate answer within an apposition. The candidates are sorted in decreasing
Order of their scores.

M10 The system selects the candidate answers with the highest relevance scores.
The final answers are either fragments of text extracted from the passages around
the best candidate answers, or they are internally generated.

Performance Evaluation
A QA system with this baseline linear architecture [Moldovan 2002] was tested

On the Role of Information Retrieval and Information Extraction 139

on 1460 questions collected from TREC-8, 9 and TREC-2001. Answers were
extracted from a 3 Gbyte text collection containing about 1 million documents
from sources such as Los Angeles Times and Wall Street Journal. Each answer
has 50 bytes.

The accuracy was measured by the Mean Reciprocal Rate (MRR) metric used
by NIST in the TREC QA evaluations [Voorhees 1999]. The reciprocal ranking
basically assigns a number equal to 1/R where R is the rank of the correct answer.
Only the first 5 answers are considered, thus R is less or equal to 5. When the
system does not return a correct answer in top 5, the precision score for that
question is zero. The overall system precision is the mean of the individual scores.
System answers were measured against correct answers provided by NIST.

Table 2. Distribution of errors per System module

Module | Module definition Errors (%)

QP (M1) | Keyword pre-processing (split/bind/spell check) 1.9
(M2) | Construction of internal question representation 5.2

(M3) | Derivation of expected answer type 36.4

(M4) | Keyword selection (incorrectly added or excluded) 8.9

(M5) | Keyword expansion desirable but missing 25.7

DR (M6) | Actual retrieval (limit on passage number or size) 1.6
(M7) | Passage post-filtering (incorrectly discarded) 1.6

AP (M8) | Identification of candidate answers 8.0
(M9) | Answer ranking 6.3

(M10) | Answer formulation 4.4

The inspection of internal traces, at various checkpoints inserted after each
module reveals the system errors for each evaluation question. The goal in this
experiment is to identify the earliest module in the chain (from left to right)
that prevents the system to find the right answer, i.e.cCauses the error.

As shown in Table 2, question pre-processing is responsible for 7.1% of the
errors distributed among module M1 (1.9%) and M2 (5.3%). Most errors in
module M2 are due to incorrect parsing (4.5%). Two of the ten modules (M3
and M5) account for more than half of the errors. The failure of either module
makes it hard (or impossible) for subsequent modules to perform their task.
Whenever the derivation of the expected answer type (module M3) fails, the set
of candidate answers identified in the retrieved passages is either empty in 28.2%
of the cases (when the answer type is unknown) or contains the wrong entities
for 8.2% (when the answer type is incorrect). If the keywords used for passage
retrieval are not expanded with the semantically related forms occurring in the
answers (module M5), the relevant passages are missed.

The selection of keywords from the internal question representation (module
M4) coupled with the keyword expansion (module M5) generate 34.6% of the
errors. Both these modules affect the output of passage retrieval, since the set
of retrieved passages depends on the Boolean queries built and submitted to the
retrieval engine by the QA system.

Modules M6 and M7 are responsible for the retrieval of passages where an-
swers may actually occur. Their combined errors is 3.2%. In module M6 there

140 D. Moldovan and M. Surdeanu

are parameters to control the number of retrieved documents and passages, as
well as the size of each passage.

Answer processing is done in modules M8 through M10. When the expected
answer type is correctly detected, the identification of the candidate answers
(module M8) produces 8.0% errors. 3.1% errors are due to named entity recog-
nition (incomplete dictionaries) and 4.9% are due to spurious answer pattern
matching. Modules M9 and M10 fail to rank the correct answer within the top 5
returned in 10.7% of the cases. Module M9 fails if the correct answer candidate
is not ranked within the top 5, whereas M10 fails if the returned answer string
is incomplete, namely it does not fit within 50 bytes.

A More Advanced QA System Architecture

The results presented in previous sections correspond to the serialized baseline
architecture. Such an architecture is in fact a simplified version of our system
which uses several feedbacks to boost the overall performance [Moldovan 2002].

M5
Question —»{ MI+M2 | oo M6

1)
M3 +MA el aernations proving
Loop | —‘

Loop 2

M7+M8 [l Logic | MOMIO |, o

Loop 3

Fig. 5. Architecture with feedbacks

As shown in Figure 5, the architecture with feedbacks extends the serial-
ized architecture in several ways. Keyword expansion (module M5) is enhanced
to include lexico-semantic alternations from WordNet. A new module for logic
proving and answer justification is inserted before answer ranking. In addition,
three loops become an integral part of the system: the passage retrieval loop
(loop 1); the lexico-semantic loop (loop 2); and the logic proving loop (loop 3).

Table 3. Impact of feedbacks on precision

Feedback Precision | Incremental
added (MRR) | enhancement
none 0.421=b 0%
Passage retrieval | 0.468=b; b+11%
(loop 1)
Lexico-semantic | 0.542=b, b1 +15%
(loop 2)
Proving (loop 3) | 0.572=b; by+5%

As part of loop 1, the Q/A system adjusts Boolean queries before passing
them to the retrieval engine. If the output from the retrieval engine is too small,
a keyword is dropped and retrieval resumed. If the output is too large, a keyword
is added and a new iteration started, until the output size is neither too large, nor
too small. When lexico-semantic connections from the question to the retrieved
passages are not possible, loop 2 is triggered. Question keywords are replaced

On the Role of Information Retrieval and Information Extraction 141

Table 4. Summary of the main modules in IR, IE and QA

Subsystem Module IR | IE
Question processing keyword preprocessing X
question representation
answer prediction

keyword selection

keyword expansion

document indexing document indexing

and retrieval document search and retrieval
document ranking

document processing morphological and lexical proc
extract relevant passages
syntactic parsing

name entity recognition
coreference

discourse processing

semantic analysis

use of world knowledge | WordNet

dictionaries

use of domain knowledge| domain ontologies

domain patterns

domain coreference

domain event merging

output extracting patterns

complex nlp techniques
merger

answer ranking

logic prover

answer justification

output formatting template filling X
answer formulation y o|x

Is]
»>

I

MMM M M M| <<

el T T B Al B BT T I

Il R

E T

with WordNet-based alternations and retrieval is resumed. Loop 3 relies on a
logic prover that verifies the unifications between the question and logic forms.
When the unifications fail, the keywords are expanded with semantically related
alternations and retrieval resumes.

Table 3 illustrates the impact of the retrieval loops on the answer accuracy.
The knowledge brought into the question answering process by lexico-semantic
alternations has the highest individual contribution, followed by the mechanism
of adding/dropping keywords.

4 A Global View of IR, IE, and QA

As we have Seen, there are some modules common to more than one technology.
A global view of this is shown in Table 4. We marked with x features that are fully
supported, and with y features that are only partially supported. For example,
advanced QA systems have answer formulation and generation features, whereas
IE systems have only some limited form of text generation based on the template
fills (see the COMMENT template fields in Figure 2).

142 D. Moldovan and M. Surdeanu

5 Trade-Offs in QA Systems

As Table 4 indicates, Question Answering systems use modules common with IR
and IE. The recent QA literature contains reports on QA systems that emphasize
either IR or IE, which indicates a rich possibility of trade-offs in implementing
these systems.

IR-Based QA

An IR-based QA system is built on top of an IR engine. In this case, the Question
Processing is reduced to question classification. Two basic methods were used
to build IR-based QA systems:

e QA systems that retrieve relevant documents and extract answers directly
from those documents [Kwok 20001. The IR module extracts and ranks docu-
ments using: coordinate matching, stemming, synonyms, identifies important
words, proximity of question words, order of question words, capitalizations
and quoted query words. Answer extraction and formulation is reduced to
heuristic pattern matching which identifies entities such as person, places,
dates, units (length, area, time, currency, population) by using some heuris-
tics.

e QA systems that retrieve only relevant passages from documents and then
extract answers by further processing those passages. The advantage of pas-
sage retrieval over full document retrieval is that the amount of text that
needs to be processed is significantly reduced. The systems in this category
used various techniques to retrieve passages ranging from statistical methods
[Ittycheriah 2001], to identifying passages based on answer category deter-
mined from the question [Clarke 2000], or conceptual indexing coupled with
relaxation ranking [Woods 2000].

QA Based on IE

IE-based QA systems use IE methods, such as named entity taggers and surface
patterns, to extract answers. Not having an IR engine, these systems rely on an
outside source to supply relevant documents. Answers are extracted by matching
the question keywords to the documents supplied from outside. The system
described in [Srihari 1999] uses a preliminary ranking of documents to find the
most probable answers by counting how many unique keywords are contained
in a sentence. A secondary ranking of documents is done based on the order in
which the keywords appear in the question. Yet, a third ranking is used to allow
for matching variants of key verbs. A QA system that is based exclusively on IE
patterns is described in [Soubbotin 2001].

6 Applications

Each of the three technologies has been implemented in commercial applications
systems. In this section we will explore a few ways of combining two of the
technologies for the purpose of building more powerful knowledge management
(KM) application systems.

On the Role of Information Retrieval and Information Extraction 143

Documents

Question Question o | Document o | Template Template Answers
Processing | Retrieval 7| Extraction
M @ A

Resources: open—domain and domain—specific

Fig. 6. IE Architecture extended with question processing and document retrieval

6.1 Domain Specific KM from Large Document Collections

This application answers domain-specific questions by finding domain specific
events or entities from large document collections. From a technical point of view
this system injects QA features into an IE system, such that: (a) the IE system
understands natural language questions, and (b) large collections are accessed
using passage retrieval techniques. For example, imagine a car insurance agency
investigator who wants to find details about a certain accident:

“What accident took place in Dallas, at 3:30pm?”

The envisioned system architecture is shown in Figure 6. The system behavior
is the following;:

1. First the question must be processed. From the question answer type (“acci-
dent”) the system identifies that the user is interested in an accident event,
hence it will later enable only pattern rules relevant to this domain. The
keywords are then selected just like in the QA system: “accident”, “Dallas”,
“3:30pm”.

2. The system retrieves paragraphs based on the set of keywords (similar to
QA).

3. Answer processing is basically IE. Based on the question answer type, the
corresponding domain (here “accident events”) is enabled. Using IE tech-
niques, the system fills in the templates extracted from the previously re-
trieved paragraphs, which become the answer as shown below.

ACCIDENT
TYPE: “two cars collided”
LOCATION: “NW Highway”
TIME: “3:30pm”
DAMAGE: “broken light, damaged fender”

Such a system can be applied to any domain-specific application where the
answers tan be represented in a template form. There are many such applications:

144 D. Moldovan and M. Surdeanu

a news agency agency could use the “bombing domain” to track the latest events
in the Middle East, an intelligence agency could use the “people movement”
domain to track the movements of important people, etc. These domain-oriented
applications are very hard to be handled by open-domain QA systems, which
might miss domain-specific information.

6.2 Advanced Open-Domain KM from Large Document Collections

This idea enhances the QA systems with some useful techniques implemented
in IE systems. We refer mainly to the framework that identifies syntactic pat-
terns, such as SVO (subject-verb- object) patterns or complex noun groups.
This framework can be ported to a QA system to help extract answers that can
be identified through syntactico-semantic patterns. Currently, some QA systems
handle definition (e.g. “What is anorezia nervosa?”) and author (e.g. “Who
wrote the declaration of Independence?”) questions by using patterns. But the
pattern recognition mechanisms implemented are more primitive than the ones
implemented in advanced IE systems. Besides these types of questions, many
other questions tan be identified through patterns as demonstrated by [Soub-
botin 2001].

While information extraction provides the syntactic framework for pattern
identification (i.e. all the forms in which a SVO patterns can be expressed) the
semantic constraints for the patterns are provided by question processing. For
example, for the question:

“What is a petabyte?”

The QP module constructs the semantic constraints for the SVO pattern as
follows:

SUBJECT: “petabyte”
VERB: any “be” verb
OBJECT: anything

The answer extraction module identifies all the matches for this pattern,
and extracts the answer as the object field of the SVO pattern. Note that the
advanced pattern matching techniques implemented in state-of-art IE systems
allow for broad coverage of possible syntactic forms of any given pattern. The
template in the above example matches not only SVO patterns in active form,
e.g. “a petabyte is ...”, but also relative forms, e.g. “ a petabyte, which is ...”,
or gerund verb forms “..the petabyte being ... "

This approach allows the transfer of the pattern matching technology devel-
oped in IE systems for more than 10 years, to open-domain QA systems, which
until recently have relied only on surface-text techniques for answer detection.

6.3 QA on the Web

Until recently, QA systems have focused on extracting answers from locally-
indexed collections of documents. In many real world applications, the Web

On the Role of Information Retrieval and Information Extraction 145

P

Answer
uer uer: p| Search -
e Forms Extraction & |———» Answer

Formulation Engines U »
- Formulation
A A A

Resources

Fig. 7. Web-based Question Answering System

is a valuable source of information. With millions of anonymous contributors
continuously adding new content, the Web has been growing into a huge, un-
structured and diverse information resource, covering virtually every topic of
interest. Search engines now offer access to over two billion Web documents
[Sullivan 2000], but most of this information remains inaccessible to users, as
the search engines are often incapable of pinpointing the specific information
desired. The recently emerged web-based QA systems provide a natural lan-
guage wrapper to search engines that: (a) provide a more intuitive interface
for question formulation, and (b) extract and report natural language answers
instead of a set of document URLs.

The architecture of a generic web-based QA system is shown in Figure 7.
The system architecture is similar to a regular QA system, except that the static
collection of documents is replaced with one or more search engines. Nevertheless,
additional features have to be added to each of the three QA system modules.
First, the query formulation module must understand the search engine syntax
when formulating a query. For example, some search engines accept advanced
boolean operators such as OR and NEAR, some do not. Second, the document
retrieval module must handle the network latency when retrieving documents,
and must also consider the fact that some indexed documents might not be
available at all. And third, web documents are stored in various formats which
must all be translated into a canonical form before being passed to the answer
extraction module.

Besides these problems, the natural language wrapper around search engines
offers some attractive advantages. Unlike meta-search engines, for web-based
QA systems it is relatively painless to integrate multiple search engines under a
single umbrella. The answer extraction module provides an elegant framework
for ranking answers independently of their originating document, which means
that multiple search engines can be queried in parallel and their documents
merged before answer extraction and formulation.

Despite their young age and all the difficulties mentioned above, web-based
QA system have approached commercial maturity [LCC].

146 D. Moldovan and M. Surdeanu

References

[Brill 2001] E. Brill, J. Lin, M. Bnako, S. Dumais, A. Ng. Data-Intensive Question
Answering. Proceedings of the TREC-9, 2000.

[Clarke 2000] C. L. A. Clarke, G. V. Cormack, D. I. E. Kisman, T. R. Lynam. Question
Answering by Passage Selection (MultiText Experiments for TREC-9). Proceed-
ings of the TREC-9, 2000.

[Harabagiu et al. 2000] S. Harabagiu, M. Pasca, and S. Maiorano. Experiments with
open-domain textual question answering. Proceedings of the 18th International
Conference on Computational Linguists (COLING-2000), 2000.

[Harabagiu 2000] S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea, M. Surdeanu,
R. Bunescu, R. Girju, V. Rus, P. Morarescu. FALCON: Boosting Knowledge for
Answer Engines. Proceedings of the TREC-9, 2000.

[Harabagiu et al. 2001] S. Harabagiu, D. Moldovan, M. Pasca, M. Surdeanu, R. Mihal-
cea, R. Girju, V. Rus, F. Lacatusu, P. Morarescu, and R. Bunescu. Answering
complex, list, and context questions with LCC’s question answering server. Pro-
ceedings of the 10th Text REtrievai Conference (TREC-2001), 2001.

[Harabagiu and Surdeanu 2002] S. Harabagiu and M. Surdeanu. Infrastructure for
Open-Domain Information Extraction. Proceedings of Human Language Tech-
nology 2002 (HLT 2002), 2002.

[Hobbs et al. 1996] J. Hobbs, D. Appelt, J. Bear, D. Israel, M. Kameyama, M. Stickel
and M. Tyson. FASTUS: A cascaded finite-state transducer for extracting infor-
mation from natural-language text. Finite State Devices for Natural Language
Processing, 1996.

[Hovy 2000] E. Hovy, U. Hermjakob, C-Y Lin, M. Junk, L. Gerber. The Webclopedia.
Proceedings of the TREC-9, 2000.

[Ittycheriah 2001] A. Ittycheriah, M. Franz, S. Roukos. IBM’s Statistical Question An-
swering System. Proceedings of the TREC-2001.

[Kwok 2000] K. L. Kwok, L. Grunfeld, N. Dinsti, and M. Chan. TREC-9 Cross Lan-
guage, Web and Question Answering Track Experiments using PIRCS. Proceed-
ings of the TREC-9, 2000.

[LCC] Language Computer Corporation web site: languagecomputer. com

[Mihalcea 2001] R. Mihalcea, D. Moldovan. Semantic Indexing using WordNet Senses.
Proceedings of ACL-2001 Workshop on Recent Advances in Natural Language
Processing and Information Retrieval, Hong Kong, 2000.

[Moldovan 1999] D. Moldovan, S. Harabagiu, M. Pasca, R. Mihalcea, R. Goodrum, R.
Girju, V. Rus. LASSO: A Tool for Surfing the Answering Net. Proceedings of
the Eight Text REtrieval Conference (TREC 8), National Institute of Standards
and Technology, 1999.

[Moldovan 2001] D. Moldovan, V. Rus. Logic Form Transformation of WordNet and
its Applicability to Question Answering. Proceedings of the ACL, 2001.

[Moldovan 2002] D. Moldovan, M. Pasca, S. Harabagiu, M. Surdeanu. Performance
Issues and Analysis in an Open-Domain Question Answering System. Proceedings
of the ACL, 2002. Error

[Pasca and Harabagiu 2001] M. Pasca and S. Harabagiu. The informative role of Word-
Net in open-domain question answering. Proceedings of the 2nd Meeting of
the North American Chapter of the Association for Computationai Linguistics
(NAACL-01), 2001.

[Soubbotin 2001] M. M. Soubbotin, S. M. Soubbotin. Patterns of Potential Answer
Expressions as Clues to the Right Answers. Proceedings of the TREC-2001.

On the Role of Information Retrieval and Information Extraction 147

[Srihari 1999] R. Srihari and W. Li. Information Extraction Supported Question An-
swering. Proceedings of the TREC-8, 1999

[Sullivan 2000] D. Sullivan. Search engine sizes. searchenginewatch.com, November
2000

[Voorhees 1999] E. Voorhees The TREC-8 Question Answering track report. Proceed-
ings of the 8th Text REtrieval Conference (TREC-8), 1999.

[Voorhees 2001] E. M. Voorhees. Overview of the TREC 2001 Question Answering
Track. Proceedings of the TREC-2001.

[Woods 1997] W. A. Woods. Conceptual Indexing: A Better Way to Organize Knowl-
edge. Technical Report SMLI TR-97-61, Sun Microsystems Labs, Mountain
View, CA, 1997.

[Woods 2000] W.A. Woods, S. Green, P. Martin, and A. Houston. Halfway to Question
Answering. Proceedings of the TREC-9, 2000.

	Information Retrieval
	Information Extraction
	Question Answering
	A Global View of IR, IE, and QA
	Trade-Offs in QA Systems
	Applications
	Domain Specific KM from Large Document Collections
	Advanced Open-Domain KM from Large Document Collections
	QA on the Web

