
Infrastructure for Open-Domain Information Extraction

Mihai Surdeanu
Language Computer Corporation
6440 North Central Expressway

Dallas TX 75206

mihai@languagecomputer.com

Sanda M. Harabagiu
Language Computer Corporation
6440 North Central Expressway

Dallas TX 75206

sanda@languagecomputer.com

ABSTRACT
The problem of performing open-domain Information Extraction
(IE) was historically tied to the problem of ad-hoc acquisition of
extraction patterns. In this paper we show that this requirement
is not sufficient and that we also need to build new IE architec-
tures that combine the role of linguistic patterns with coreference
knowledge and ambiguous syntactic and semantic information. We
present the implementation of a novel IE architecture, namely the
CICERO system and show how (1) both high precision and high re-
call results were obtained for a variety of extraction domains; and
(2) how textual information can be extracted for virtually any do-
main in a precise and reliable way. The evaluation of CICERO’s
performance shows a significant improvement over MUC IE sys-
tems.

1. INTRODUCTION
In the 90s, the Message Understanding Conferences (MUCs) and

the TIPSTER programs gave great impetus to research in infor-
mation extraction (IE). The systems that participated in the MUCs
have been quite successful at extracting information from newswire
messages and filling templates with the information pertaining to
the events of interest. Typically, the templates model queries re-
garding who did what to whom, when and where, and eventually
why. The most remarkable results concerned the performance of
some of the IE subtasks that has reached near-human precision. For
example, current Named Entities were recognized with over 90%
precision. Not as successful was the broader task of event recog-
nition (i.e. filling in scenario templates) which resulted in at most
60% recall and 70% precision. For a while, this was believed to be
a de-facto performance barrier of IE systems. The rationale of this
belief is partly explained by the converging results of different IE
systems performing scenario template extractions. The other ex-
planation stems from the similar architectures of IE systems that
participated in the last MUC evaluations.

In todays’ world the need for Information Extraction is more per-
vasive than ever. In fact, we need to be able to operate open-domain
IE, in which the domain of interest results from several interactions
with the user, in quest of capturing novel data trends from massive

HLT’02 San Diego, California USA
.

Preprocessor

Named Entity
Recognizer

Tokenizer

Parser

Domain−Event
Recognizer

Coreference
Entity

Event Merging

Named Entity
Coreference

Partial POS
Disambiguation

Coreference
Event

Traditional Novel

Text

Filled Extraction Templates

Figure 1: The architecture of the CICERO IE system.

text collections. Successful open-domain IE cannot be achieved
only by automatically learning linguistic patterns that encode the
domain knowledge. We also need to reliably recognize corefering
entities or events of interest and we need to disambiguate precisely
syntactic and semantic information pertaining to the topic of inter-
est, regardless of domain. Moreover, in this paper we claim that
open-domain IE systems need to extract scenario templates with
better performance than the typical systems evaluated in MUC.
For this reason we have developed the infrastructure that surpassed
the 70% F-score ceiling, and thus provides high-performance IE
for any possible domain. This infrastructure is best illustrated by
the architecture of CICERO, the IE system developed by Language
Computer Corporation and represented in Figure 1. In order to
emphasize the novelties introduced by our information extraction
system, we separated CICERO’s modules in two categories: mod-
ules seen in traditional IE systems, and novel modules introduced
in CICERO.

CICERO’s first module is the tokenizer, whose task is to break the
message into lexical entities or tokens. A lexical recognizer iden-
tifies tokens or groups of tokens that are entries in dictionaries or
gazetteers1. The preprocessor patterns identify simple numerical
lexical entities, such as money, percents, dates, or times. The next

�

Gazetteers are long lists of location or person names.

module recognizes named-entities like persons, organizations, or
locations. The named-entity coreference is the first novel module
introduced by CICERO. Its task is to help disambiguate incomplete
or ambiguous named entities. For example, given the name Austin,
it is classified either as a person or a location depending on possi-
ble reference to previous entities from the text. This module is de-
scribed in more detail in the next section. The partial part of speech
(POS) disambiguation module is another CICERO novelty. We use
this module to enhance the precision of POS tagging. This fea-
ture is important for the resolution of nominal anaphorae in texts,
which in turn greatly influences the overall performance of IE, as
we will show throughout this paper. We implemented the POS dis-
ambiguation module using voting between our lexicons and an ex-
ternal POS tagger (Eric Brill’s POS tagger [2]). The next module is
a phrasal parser, used to identify noun, verb and particle phrases.
As reported in [4], successful IE systems can be implemented by
relying only on phrasal parsers and by cascading Finite-State Au-
tomata (FSAs) that recognize patterns corresponding to (1) named
entities; (2) simple and complex phrases and (3) information rele-
vant to the domain of interest. Such traditional IE architectures (cf.
[1], [3], or [5]) prefer finite-state models over full natural language
processing because they would rather do only the right language
processing for IE instead of deep NLP. This decision was largely
inspired by the tremendous success in MUC-3 that the group at the
University of Massachusetts obtained with a fairly simple system
[6].

Anaphoric expressions hinder the process of matching event pat-
terns. To resolve pronominal and nominal anaphorae, we use an
open-domain coreference resolution module that generates corefer-
ence links between each noun phrase and antecedents that agree in
number, gender and are semantically consistent with the anaphora.
Coreference resolution enables the domain event recognizer to match
text against event patterns and to populate the corresponding do-
main templates/templettes2. The task of the domain coreference
module is to fill template or templette slots that could not be filled
using domain patterns. The merging module is used to combine
templates/templettes that refer to the same event. It gives prece-
dence to templates found inside the same sentence.

The novel IE architecture implemented in CICERO generates im-
pressive extraction results. For example, on the “management suc-
cession” domain tested in the MUC-6 evaluations, it obtains an
F-score of 83%. The F-score is defined as

����������
	�� where � is
precision and
 is recall.

2. IMPROVING EXTRACTION RESULTS
After the MUC-6 evaluations it was believed that the perfor-

mance of an IE system is directly proportional with the number of
rules available. The ACCELERATE program analyzed this claim
and showed that it is not valid. Thus, before creating any open-
domain IE infra-structure, we need to analyze in depth the condi-
tions that enable the best performing IE system. We have found that
two factors are determinant for obtaining high-performance IE:

1. Coreference plays an important role. In fact coreference res-
olution is an engineering bottleneck in IE systems because

�
For each extraction task a domain template is defined, as an in-

terface to database entries. The TIPSTER MUC evaluations used
predefined templates. The population of templates required cum-
bersome rules for filling and scoring. In an attempt to simplify
the template processing, the Hub-4 Event99 introduced the “tem-
plettes”, consisting of just a few slots representing basic informa-
tion such as main event participants, event outcome, time and loca-
tion.

(1) it influences merging of information referring to same
entity or event, and (2) it participates in the disambiguation
of incompletely defined entities/events. We identified three
forms of coreference useful for IE:

(a) Coreference is first used by the named-entity recognizer
to classify named entities. For example, the named-entity
“Michigan” can be either a location name, or an organiza-
tion abbreviation. A coreference chain linking this entity
to “Michigan Corp.” disambiguates this entity to a not-so-
intuitive organization name. To evaluate the impact of coref-
erence on the named entity recognizer (NER) we evaluated
the performance of CICERO’s NER on the MUC-6 test data,
with and without coreference information3. Our experiments
indicated that, for the NE task alone, the coreference deter-
mines over 5% increase in F-measure: the NER F-measure
without coreference information is 87.81, whereas the F-measure
after coreference information is available is 93.64.

(b) An open-domain entity coreference algorithm is used to
resolve nominal and pronominal anaphors. Similar approaches
were taken by other IE systems, hence we do not focus on
this issue.

(c) Event coreference is used to fill template or templette slots
that can not be filled using pattern matching rules. The do-
main coreference uses the same candidate retrieval strategy
as any open-domain coreference module, but each semantic
filter is adapted for the type of entity that is compatible with
the corresponding missing slot. Consider the following text
from the “natural disasters” domain:

... flooding has become a way of life in Guerneville
in the last several years. This gas station along the
Russian River gets hit nearly every time. ...

CICERO’s domain event recognizer successfully recognizes
the text “This gas station along the Russian River gets hit” as
part of the � DISASTER DESTROYS ARTIFACT � , but it
fails to identify “flooding” as the disaster type. Event coref-
erence fills the empty templette slot with the disaster entity
closest to the recognized pattern (.e.g. “flooding”).

To evaluate the impact of coreference on the rest of IE sys-
tem, we used as baseline the system with the entity and event
coreference modules disabled, and compared the baseline
against a system with entity coreference enabled, and against
a system with all coreference modules enabled. Figure 2
plots CICERO’s performance for the MUC-6 domain and
the three configurations, when the number of meta-rules in-
creases from 1 to 26. Figure 2 shows two important ideas:
first, it indicates that coreference almost doubles the perfor-
mance of an IE system, a radical result different from pre-
vious IE system performance analysis reports. As Figure 2
indicates, CICERO without coreference barely approaches
the 50% F-measure range, while with coreference enabled it
reaches the upper 70% range.

2. The usage of non-deterministic finite state automata (FSA),
which can handle ambiguous input and can generate am-
biguous output is vital for the handling of natural language
ambiguities. The non-deterministic FSAs are used to post-
pone the decision taking for ambiguous output until suffi-
cient contextual information (i.e. coreference chains or do-

�
Throughout this paper we use MUC-6 dry run documents as train-

ing data, when not mentioned otherwise.

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

F
 m

ea
su

re

Number of rules

entity + event coref
entity coref

baseline

Figure 2: The impact of entity and event coreference on the
performance of the CICERO IE system.

main patterns) exists to eliminate ambiguities. For exam-
ple, our named entity recognizer is able to associate multiple
semantic tags to named entity, leaving the task of tag disam-
biguation to the named-entity coreference module, which has
access to increased context because it uses textual informa-
tion from the whole document. Our novel non-deterministic
pattern matching technique reduces the propagation of errors
between IE modules, because we propagate all possible so-
lutions, which increases the probability that we identify the
correct solution. In other words, we maximize the recall
of the initial FSA-based modules (i.e. preprocessor, named-
entity recognizer and parser) and use the domain-event rec-
ognizer and the coreference modules to increase precision
due to their better understanding of the processed text.

Nevertheless non-deterministic FSAs need to be controlled
to avoid the generation of spurious input objects for the next
processing stage. This observation is implemented in CI-
CERO with a series of additional filters. For example the
“Partial POS disambiguation” module is used to control the
phrasal parser output. If POS disambiguation is not enabled,
the phrasal parser generates different syntactic phrases for
each POS tag combination that matches a grammar rule. For
example, the word “seek” can be both a noun and a verb
phrase if additional constraints are not present in the text.
Allowing the phrasal parser to generate all possible phrases
complicates significantly the task of the entity coreference
module, which attempts to build coreference chains for all
noun phrases. That is why in the current CICERO implemen-
tation we have added the POS disambiguation stage, which
uses a voting algorithm between our internal lexicon and Eric
Brill’s POS tagger to reduce the number of noun phrases con-
structed by the parser. Similarly, named-entity coreference
can be regarded as a filtering stage for the spurious entries
generated by the named-entity module.

3. THE ROLE OF COREFERENCE IN IE
This section describes the novel coreference resolution mecha-

nisms implemented in CICERO. We noticed five different situations
where coreference resolution is important. The first three situations
are handled by the named-entity coreference module, and the last
two by the open-domain coreference and the domain coreference
correspondingly.

1] Disambiguate incomplete named-entities
This task disambiguates entities that are likely to be part of a name,

but can not be identified as such due to incomplete information. For
example, the second occurrence of the string “Michigan National”
in the text:

“Michigan National Corp. said it will eliminate some
senior management jobs... Michigan National said the
restructuring...”

can not be identified as a named entity, but it can be safely as-
sociated with an organization name because the string “Michigan
National Corp.” appears as a coreference candidate in the same
context.

2] Disambiguate named-entities
This task disambiguates entities which have either ambiguous length
or ambiguous type. For example, the type of the named entity
“Michigan” will be changed from location to organization if the
string “Michigan Corp.” appears in the same context. The second
issue addresses the disambiguation of named entities with ambigu-
ous length: if no NE pattern is matched, the string “Young’s” may
correspond either to the organization named entity “Young’s” or to
another named entity of shorter length: “Young”. Our solution to
the above problem is to construct both entities in the named-entity
recognizer. In the named-entity coreference module we maintain
only the entity that is consistent with its context. For example, if
the context surrounding the ambiguous entities contains the organi-
zation “Young’s Corp.”, the shorter length entity “Young” is deleted
and “Young’s” is disambiguated to an organization named entity.

3] Recognize headline named-entities
The headline named entity recognition is considered to be a more
complicated problem than the recognition of named entities lo-
cated in the message body, because headline words are typically
all capitalized or start with capitalized letters and case is a very
important feature in named entity grammars. As an alternative to
case-insensitive grammars, we proposed a coreference-based ap-
proach for the headline NE recognition. We initially delay the pro-
cessing of headline named entities until after the message body is
processed. Then we use a longest match approach to match the
headline sequence of tokens against entity names recognized in the
first message paragraph. For example, in the headline “McDermott
Completes Sale” only the string “McDermott” is disambiguated to
an organization named-entity because “McDermott International
Inc.” appears in the first message paragraph. Note that our case
sensitive grammar would have matched the whole headline as a po-
tential named-entity. By using coreference we are able to achieve
better results with a simpler approach.

4] Resolution of nominal/pronominal anaphors
The resolution of nominal and pronominal references increases sig-
nificantly the recall of the pattern recognition mechanism imple-
mented in the domain event recognizer. For example, if a domain
pattern expects to see an organization name in a certain position, it
will not match over the “it” pronoun, unless the pronoun refers to
an organization name. The coreference algorithm is implemented
in two steps: a candidate retrieval step which identifies possible
candidates for the current coreference link, and a semantic consis-
tency filtering step, which selects the first candidate that is semanti-
cally consistent with the anaphor. For semantic filtering we employ
dedicated filters for pronoun, person name, organization name, and
common noun candidates. For example, a common noun candidate
is considered consistent with the anaphor if the two entities agree
in number and gender and the anaphor is a hypernym or synonym
of the candidate in WordNet.

5] Fill in missing template/templette slots
Following the domain event recognizer the domain coreference fills

the template or templette slots that could not be filled by the pre-
vious module using patterns, which are represented as Finite State
Automata (FSA). Due to the inherent complexity of the natural lan-
guage, there are many situations when relevant information is not
expressed in a form that can be captured by a reasonable pattern,
hence the importance of domain coreference. The following exam-
ple from a “natural disaster” message illustrates the problem:

... Although warmer temperatures have helped out
Montreal today, and ice has come crashing down nearly
everywhere, public utilities here are still a mess. Overnight,
massive power outages knocked out a water filtration
plant, ...

For the above text, CICERO’s domain event recognizer partially
matches the <DISASTER DESTROYS ARTIFACT> pattern over
the text “knocked out a water filtration plant”. Due to the incom-
plete match, the constructed templette lacks the type of disaster
that caused the event, and the location and date of the event, which,
even though present in the text, can not be extracted with an accept-
able pattern. The domain-dependent coreference module is used in
such situations to search the pattern context for entities that match
the missing slots. In the above example, using domain coreference
we are able the retrieve the disaster type (“ice”), the event location
(“Montreal”) and the event date (“today”).

4. NON-DETERMINISTIC FSA
The addition of non-deterministic FSAs is another contributing

factor in CICERO’s performance. The following examples show
how non-deterministic FSAs are used to accommodate the natural
language ambiguities. For example, in the text:

“... the storm hit Lincoln ...”

the named-entity recognizer generates both location and person
named-entities for the string “Lincoln” due to scarcity of semantic
information. This ambiguity propagates through CICERO’s mod-
ules up to the domain event recognizer which disambiguates “Lin-
coln” as a location named-entity with the pattern
<DISASTER HAPPENED-IN LOCATION>. Another example
was presented in the previous section, where coreference is used
to disambiguate ambiguous named-entities. If non-deterministic
FSAs were not used, the construction of ambiguous output, either
of different type like “Michigan” as both location and organization
name, or of different length like “Young” and “Young’s” would
not be possible. The last example presented shows the applica-
tion of non-deterministic FSAs to parsing. One of the problems we
encountered during the implementation of the deterministic parser
was the treatment of “that”, which can be both a determiner and
a particle. The correct parsing of “that” is extremely important
because it affects all domain patterns that contain nouns with this
determiner, and also all the domain patterns expressed in relative
form. For example, the pattern <LOCATION CONTAINED DIS-
ASTER> can not be matched over the text:

“... the flood that Florida saw today ...”

if “that” is parsed as a determiner part of the “that Florida” noun
group. Our relative object pattern macro matches over forms like
<OBJECT THAT SUBJECT VERB>, hence the recognition of “that”
as a particle is crucial. Because the distinction between determiner
and particle is extremely difficult for a FSA-grammar parser, we
allowed both forms of “that” to be generated with equal priority.

In order to implement non-determinism in CICERO we had to
provide solutions for the following issues:

START DETERMINER

ADJS

HEAD_NOUN END

NG

Figure 3: FSA for the pattern: NG
� � � DETERMINER

ADJS? HEAD NOUN

1] Allow ambiguous input
Because CICERO’s backbone is implemented as a sequence of FSAs,
one module’s ambiguous output becomes the next module’s am-
biguous input. For example, if the named-entity recognizer could
not decide between an organization or a person named-entity, both
entities are passed as ambiguous input to the next FSA module,
the parser. The solution we adopted in CICERO was to implement
the interface between FSAs as a lattice of objects instead of a lin-
ear vector. Our lattice implementation allows for multiple objects
to start at the same position, and for objects that start at the same
position to end at different positions. The search algorithms were
modified to scan all alternative lattice entries.

2] Allow the generation of ambiguous output
The generation of ambiguous output is implemented by allowing
the search process to continue after the first match, in one of the
following two conditions:

� The solution path contains OR alternatives. For example, one
of the first rules in the parser grammar is
START ==> VG | NG. In this situations, CICERO’s run-
time search system investigates all the other alternatives in
the OR constructs, even if the first one (e.g. VG) has been
already matched.

� There are grammar rules with equal priority as the rules used
to obtain the first solution path. CICERO’s grammar rules are
prioritized and rules with higher priority are always preferred
over rules with lower priority. Ambiguities are allowed in the
search process by investigating all rules with similar priority
as the rules used to obtain the first solution.

3] Optimize the search on non-deterministic FSAs
In Cicero all grammar patterns are implemented as FSA. Figure 3
shows a sample FSA generated by CICERO’s compiler. The pat-
tern above implements a noun group grammar rule, where the noun
consists of a determiner, followed by an optional sequence of adjec-
tives, followed by a head noun. Figure 3 shows that this grammar
rule is translated into a FSA, with all states and transitions stored in
between two control nodes: START and END. Each grammar reg-
ular expression construct yields a different sequence of transitions.
For example, the optionality construct ”?” yields two possible tran-
sitions, one through ADJS, and an empty one linking DETER-
MINER with HEAD NOUN directly. Note that CICERO’s FSA
allow recursive constructs. For example, the DETERMINER con-
struct shown in Figure 3 is actually a link to the automaton that im-
plements the DETERMINER grammar rules. The DETERMINER
constructor is traversed successfully only if there is match from
START to END in the corresponding automaton.

The main problem we encountered in the implementation of search-
ing non-deterministic FSA was the high backtracking cost. In CI-
CERO, each grammar rule can be associated with a C/C++ function
executed upon successful matching. The execution of rule actions
during the search process has not only a high cost but is also use-
less considering that actions should be committed only when a full
search solution is found. Our solution to this problem is to im-
plement the search algorithm as a two-step process: the first phase

���������
	��
�������� �����
�����
�������� ��������� ����� ���� �!
"��$#
�
��� ��� ���������%�'&�&�&(*) ����+ ���,���-�.
/�021 � �3&4�65�7 � ��/�8�9
������:;7�<= .����>1>?���.�@�A = .�B�C�A���DA���-�.�/�0E1 � �F&G�65�7 � ��#
��H���8��;7�<#���.�#JIK1L7��
��7M�N7�O�H
8�9P7A���-�.�/�0JIK1 � �3&4�65�7 � ��#
8
� ����� 8��J7�<��.�@
�Q 0�R�/��'1S9���T
���
��9�8 � �U5
&�&�&V<(

Figure 4: Domain pattern implemented as an expansion of
domain-independent meta rules.

performs a graph search on the grammar FSAs. This step is a read-
only process: solution search stacks containing all visited automa-
ton nodes are constructed, but no actions are executed. The second
phase of the search algorithm traverses the search stacks and ex-
ecutes all actions encountered. This approach provides the fastest
search algorithm because it guarantees that only the actions associ-
ated with solution paths are executed.

5. PERFORMING OPEN-DOMAIN IE
A key issue that simplifies CICERO’s porting to new domains is

the fact that CICERO cleanly separates the rule construction into
domain-independent and domain-dependent parts. CICERO facil-
itates this separation with meta rules. A meta rule expands upon
domain-independent syntactic patterns with domain-dependent se-
mantic constraints. For clarification Figure 4 shows the implemen-
tation of a domain Subject-Verb-Object (SVO) pattern as an ex-
pansion of domain-independent meta rules. Note that while SVO
patterns have by far the biggest contribution of all patterns in CI-
CERO (i.e. SVO patterns plus coreference account for over 96%
CICERO’s score for the MUC-6 domain), meta rules are not limited
to SVO patterns: the same concept is used for the implementation
of complex noun groups. Figure 4 shows the implementation of the
“REMOVE” pattern, which matches over text constructs such as:

Artisoft Inc. said it fired its chairman...

or

Artisoft ousts Schoof from top two posts...

What is significant in this example is that the domain-dependent
part of the rule is contained in the “with W ... X ” construct, which de-
fines the semantic constraints to be applied on the elements part of
the SVO pattern: subject, verb, and object. The domain-independent
meta rules, shown within the “expand W ... X ” construct define the
way SVO patterns can be expressed in the current development
language (in this case English). We currently have implemented
35 meta rules that implement domain-independent syntactic con-
structs for the English language, for example the active SVO pat-
tern, where the subject precedes the verb in active form.

The previous example indicates that there are at least two rel-
evant things that have to be learned for a new domain: first and
most importantly, one needs to detect the semantic constraints to
be imposed on meta rules (i.e. the second part of Figure 4). Sec-
ond, each syntactic pattern must be expanded with other applicable
meta rules to increase the pattern coverage. It is however impor-
tant to keep the meta rules associated with each syntactic pattern
to a minimum, because too many meta rules may not only intro-
duce spurious entries due to incorrect matches, but also slow down
the system significantly due to the exponential number of patterns
generated.

The open-domain IE platform implemented in CICERO allows
the implementation of supervised machine-learning mechanisms
capable of learning new rules for new domains, given a set of train-
ing texts and templettes. The meta-rule framework and the usage
of coreference algorithms guarantee large coverage of the learned
rules. Below we present the infrastructure of such a rule learning
algorithm.

1. Learn strict rule instances
2. Generalize learned rules with meta-rules
3. Learn templette slots that can be filled with event coreference

For the clarity of the presentation we describe the algorithm be-
havior on a simple example. The algorithm input is two-fold: the
first item is CICERO’s lattice after the the full parsing and the en-
tity coreference steps. The lattice consists of a sequence of pos-
sibly overlapping noun, verb, and particle groups. Noun and verb
groups may be tagged with semantic information, such as named-
entity tags or WordNet information pre-tagged as domain-relevant
(e.g. nouns such as “flood” and “tornado” are relevant for the “nat-
ural disasters” domain). The second input item for this algorithm
step is the sequence of training templettes. Consider the following
training text “natural disasters” domain as example:

... flooding has become a way of life in Guerneville
in the last several years. This gas station along the
Russian River gets hit nearly every time. ...

and the corresponding pre-tagged templette:

<NATURAL_DISASTER> :=
DISASTER: "flooding"
AMOUNT_DAMAGE: "this gas station"
LOCATION: "Russian River"

During the first algorithm step all possible SVO patterns are gener-
ated and matched over the training text. Some validation algorithm
must be used to preserve only the patterns that have a positive con-
tribution to the overall score. During this step the following SVO
pattern will be generated:

expand {
PassiveBase

} with{
VERB = "hit"
OBJECT = has facility feature
SEMANTICS =

set amount damage = object;
set location = event adjunct location (if any);

}

The output of the first algorithm step is a set of simple rules,
which in CICERO are implemented as syntactic pattern that ex-
pand a single meta rule. However, the derivation of meta-rules of
extraction does not solve the sparse data problem. The remaining
two algorithm steps address this specific issue, first by increasing
the coverage of the learned patterns, and then by using event coref-
erence to include information that cannot be retrieved using pattern
matching.

The second algorithm step expands the rules learned in the first
step with additional meta-rules, and semantically equivalent words,
such as WordNet synonyms. This step expans the rule generated in
the previous example as follows:

expand {
ActiveBase|ActiveRelativeObject|PassiveBase|...

} with{
VERB = "hit" | "strike" | ...

OBJECT = has facility feature
SEMANTICS =

set amount damage = object;
set location = event adjunct location (if any);

}

The above example shows how the previous rule is expanded by
increasing the number of syntactic patterns covered. The rule cov-
erage is further increased by expanding the head verb constraints
with synonym verbs such as “strike”.

As our previous analysis of the CICERO IE system indicates,
successful pattern matching rules are only half of the extraction
process. Coreference, in the form of domain-independent entity
coreference and domain-dependent event coreference, is respon-
sible for the other half. Hence, a successful automatic domain
customization algorithm must address the implementation of event
coreference.

The task of event coreference is to fill in the slots missing in the
templettes constructed by the previously learned meta-rules. Miss-
ing slots occur both due to incomplete matches and because most
patterns are not designed anyway to fill all slots. It is important to
note that not all missing slots should be filled using event corefer-
ence. Depending on the currently matched rule, some slots should
be left empty because event coreference might introduce incorrect
fills from the rule context.

We exemplify the use of the event coreference learning mech-
anism on the same example used throughout this section. When
the “natural disaster” meta-rule learned in the previous step is ap-
plied on the training text it will fill in the slots corresponding to
the artifact damaged (“this gas station”) and the disaster location
(“Russian River”). Nevertheless, two important fields are missing:
disaster type and disaster date. Filling the disaster type slot using
coreference is beneficial because it successfully identifies “flood-
ing” as the disaster type, but it fails on the disaster date slot. In
this example, event coreference fills the event date slot with “last
several years”, which is a spurious entry. Hence, the learning algo-
rithm eventually marks the date slot in the templette generated by
the above meta-rule as “not to be filled” by event coreference. The
final learned templette has the following form:

expand {
ActiveBase|ActiveRelativeObject|PassiveBase|...

} with{
VERB = "hit" | "strike" | ...
OBJECT = has facility feature
SEMANTICS =

set amount damage = object;
disaster type = fill using coreference;
set location = event adjunct location (if any);

}

6. EXPERIMENTAL RESULTS
CICERO has currently been evaluated on three domains part

of the Message Understanding Conference (MUC) competition:
MUC-5, MUC-6, and MUC-7. For all domains the system has
been trained on the “dry run” messages and tested on the formal
test messages.

Table 1 shows a detailed analysis of the system modules. We
present a series of average numbers per message document, where
the average MUC message size is 2.25 KB. The values presented
in Table 1 are: the average number of patterns matched per mes-
sage, the average number of entity coreference links per message,
and the average number of event coreference links per message.
The relative small number of event coreference links versus en-
tity coreference links is somewhat surprising considering the large
contribution of event coreference to the system performance. The
explanation is that all event coreference links have an influence on

Domain Pattern # Entity Coref Links Event Coref Links

MUC-6 18 34 4
MUC-5 12 22 3
MUC-7 25 47 6

Table 1: Analysis on various domains

Domain Results with Results with
non-deterministic FSA deterministic FSA

MUC-6 77% 72.55%
MUC-5 79.1% 74.26%
MUC-7 75.25% 70.73%

Table 2: Deterministic versus non-deterministic FSA

the final score, while the entity coreference links influence the sys-
tem performance only if the corresponding entities are caught in a
pattern. Nonetheless, Table 1 sustains the conclusions drawn from
Figure 2 that coreference is indeed a significantly active module of
an IE system.

Figure 2 indicates that coreference is the single most important
module of an IE system. This result is the first significant archi-
tectural novelty introduced in CICERO. The second novel issue in-
troduced in this paper claims that non-deterministic FSA are im-
portant for a high-performance IE system. Table 2 supports this
claim. We present the overall F-measures obtained by CICERO
when non-deterministic FSA are enabled and then disabled. The
results presented indicate that non-deterministic FSA are responsi-
ble for approximately 5% increase in system performance.

7. ACKNOWLEDGMENTS
This work was partially supported by the ARDA contract

ARDA#2001*H238400*000 and by the “ARP:Knowledge Mining
for Open-Domain Information Extraction” grant from the Advanced
Research Program of the Texas Higher Education Coordinating Board.

8. REFERENCES
[1] D. E. Appelt, J. R. Hobbs, J. Bear, D. Israel, M. Kameyama,

A. Kehler, D. Martin, K. Myers, and M. Tyson. Description of
the fastus system used for muc-6. In Proceedings of the Sixth
Message Understanding Conference (MUC-6), pages
237–248. Morgan Kaufmann, 1995.

[2] E. Brill. A simple rule-based part of speech tagger. In
Proceedings of the Third Conference on Applied Natural
Language Processing, pages 152–155, 1992.

[3] R. Grishman and R. Yangarber. Nyu: Description of the
proteus/pet system as used for muc-7 st. In Proceedings of the
Seventh Message Understanding Conference (MUC-7).
Morgan Kaufmann, 1998.

[4] J. R. Hobbs, D. E. Appelt, J. Bear, D. Israel, M. Kameyama,
M. Stickel, and M. Tyson. Fastus: A cascaded finite-state
transducer for extracting information from natural-language
text. Finite State Language Processing, page edited by
Emmanuel Roche and Yves Schabes, MIT Press 1997.

[5] G. Krupka. Sra: Description of the sra system used for muc-6.
In Proceedings of the Sixth Message Understanding
Conference (MUC-6). Morgan Kaufmann, 1995.

[6] W. Lehnert, C. Cardie, D. Fisher, E. Riloff, , and R. Williams.
Description of the circus system as used for muc-3. In
Proceedings of the Third Message Understanding Conference
(MUC-3), pages 223–233. Morgan Kaufmann, 1991.

