
A Robust Combination Strategy for Semantic Role Labeling

Lluı́s Màrquez, Mihai Surdeanu, Pere Comas, and Jordi Turmo
Technical University of Catalunya

Barcelona, Spain
{lluism,surdeanu,pcomas,turmo}@lsi.upc.edu

Abstract

This paper focuses on semantic role la-
beling using automatically-generated syn-
tactic information. A simple and robust
strategy for system combination is pre-
sented, which allows to partially recover
from input parsing errors and to signif-
icantly boost results of individual sys-
tems. This combination scheme is also
very flexible since the individual systems
are not required to provide any informa-
tion other than their solution. Extensive
experimental evaluation in the CoNLL-
2005 shared task framework supports our
previous claims. The proposed architec-
ture outperforms the best results reported
in that evaluation exercise.

1 Introduction

The task of Semantic Role Labeling (SRL), i.e.
the process of detecting basic event structures
such as who did what to whom, when and where,
has received considerable interest in the past few
years (Gildea and Jurafsky, 2002; Surdeanu et al.,
2003; Xue and Palmer, 2004; Pradhan et al., 2005a;
Carreras and Màrquez, 2005). It was shown that
the identification of such event frames has a signif-
icant contribution for many Natural Language Pro-
cessing (NLP) applications such as Information Ex-
traction (Surdeanu et al., 2003) and Question An-
swering (Narayanan and Harabagiu, 2004).

Most current SRL approaches can be classified
in one of two classes: approaches that take ad-

vantage of complete syntactic analysis of text, pi-
oneered by Gildea and Jurafsky (2002), and ap-
proaches that use partial syntactic analysis, cham-
pioned by previous evaluations performed within
the Conference on Computational Natural Language
Learning (CoNLL) (Carreras and Màrquez, 2004).
The wisdom extracted from this volume of work in-
dicates that full syntactic analysis has a significant
contribution to the SRL performance, when using
hand-corrected syntactic information.

On the other hand, when only automatically-
generated syntax is available, the quality of the in-
formation provided through full syntax decreases
because the state-of-the-art of full parsing is less
robust and performs worse than the tools used for
partial syntactic analysis. Under such real-world
conditions, the difference between the two SRL ap-
proaches (with full or partial syntax) is not that high.
More interestingly, the two SRL strategies perform
better for different semantic roles. For example,
models that use full syntax recognize better agent
and theme roles, whereas models based on partial
syntax are better at recognizing explicit patient roles,
which tend to be farther from the predicate and accu-
mulate more parsing errors (Màrquez et al., 2005).

The above observations motivate the work pre-
sented in this paper. We introduce a novel semantic
role labeling approach that combines several indi-
vidual SRL systems. Intuitively, our approach can
be separated in two stages: a candidate generation
phase, where the solutions provided by several indi-
vidual models are combined into a pool of candidate
arguments, and an inference phase, where the candi-
dates are filtered using a binary classifier, and possi-



The luxury auto maker last year sold 1,214 cars in the U.S.

PPNP

VPNPNP

S

ARG0 ARGM−TMP P ARG1 ARGM−LOC

Figure 1: Sample PropBank sentence.

ble conflicts with domain knowledge constraints are
resolved to obtain the final solution.

For robustness, the inference model uses only
global attributes extracted from the solutions pro-
vided by the individual systems, e.g., the sequence
of role labels generated by each system for the cur-
rent predicate. We do not use any attributes spe-
cific to the individual models, not even the confi-
dence assigned by the individual classifiers. Besides
simplicity, the consequence of this decision is that
our approach does not impose any restrictions on the
individual SRL strategies, as long as one solution
is provided for each predicate. On the other hand,
probabilistic inference processes, which have been
successfully used for SRL (Koomen et al., 2005),
mandate that each individual candidate argument be
associated with its raw activation, or confidence, in
the given model. However, this information is not
directly available in two out of three of our individ-
ual models, which classify argument chunks and not
entire arguments.

Despite its simplicity, our approach obtains en-
couraging results: the combined system outperforms
any of the individual systems and, using exactly the
same data, it is also competitive with the best SRL
systems that participated in the latest CoNLL shared
task evaluation (Carreras and Màrquez, 2005).

2 Semantic Corpora

In this paper we report results using PropBank, an
approximately one-million-word corpus annotated
with predicate-argument structures (Kingsbury et
al., 2002). To date, PropBank addresses mainly
predicates lexicalized by verbs and a small num-
ber of predicates lexicalized by verb nominalizations
and adjectives.

The arguments of each predicate are numbered se-

quentially from ARG0 to ARG5. Generally, ARG0
stands for agent, ARG1 for theme or direct ob-
ject, and ARG2 for indirect object, benefactive or
instrument, but mnemonics tend to be verb spe-
cific. Additionally, predicates might have “adjunc-
tive arguments”, referred to as ARGMs. For example,
ARGM-LOC indicates a locative and ARGM-TMP in-
dicates a temporal. Figure 1 shows a sample sen-
tence where one predicate (“sold”) has 4 arguments.

In a departure from “traditional” SRL approaches
that train on the hand-corrected syntactic trees as-
sociated with PropBank, we do not use any syn-
tactic information from PropBank. Instead, we
develop our models using automatically-generated
syntax and named-entity (NE) labels, made avail-
able by the CoNLL shared task evaluation (Carreras
and Màrquez, 2005). From the CoNLL data, our
individual models based on full syntactic analysis
use the trees generated by the Charniak parser. The
partial-syntax model uses the chunk − i.e. basic syn-
tactic phrase − labels and clause boundaries. All in-
dividual models make use of the provided NE labels.

Following the CoNLL-2005 setting we evaluated
our system also on a fresh test set, derived from the
Brown corpus. This second evaluation allows us to
re-enforce our robustness claim.

3 Approach Overview

The proposed architecture, summarized in Figure 2,
consists of two stages: a candidate generation phase
and an inference stage.

In the candidate generation step, we merge the so-
lutions of three individual SRL models into a unique
pool of candidate arguments. The proposed models
range from complete reliance on full parsing to us-
ing only partial syntactic information. The first two
models, Model 1 and 2, are developed as sequential
taggers (using the BIO tagging scheme) on a shared
framework. The major difference between the two
models is that Model 1 uses only partial syntactic
information (basic phrases and clause boundaries),
whereas Model 2 uses complete syntactic informa-
tion. To maximize diversity, Model 3 implements
a different strategy: it models only arguments that
map into exactly one syntactic constituent. Section 4
details all three individual models.

The inference stage starts with candidate filtering,



Candidate Filtering

Reliance on full syntax

Model 1 Model 2 Model 3

Conflict Resolution

Inference

Candidate
Generation

Figure 2: Architecture of the proposed system.

which reduces the number of candidate arguments
in the pool using a single binary classifier. Using
this classifier’s confidence values and a number of
domain-specific constraints, e.g. no two arguments
can overlap, the conflict resolution component en-
forces the consistency of the final solution using a
straightforward greedy strategy. The complete in-
ference model is detailed in Section 5.

4 Individual SRL Models

Models 1 and 2. These models approach SRL as
a sequential tagging task. In a pre-process step, the
input syntactic structures are traversed in order to
select a subset of constituents organized sequentially
(i.e. non embedding). Model 1 makes use only of
the partial tree defined by base chunks and clause
boundaries, while Model 2 explores full parse trees.

Precisely, the sequential tokens are selected as fol-
lows. First, the input sentence is splitted into dis-
joint segments by considering the clause boundaries
given by the syntactic structure. Second, for each
segment, the set of top-most non-overlapping syn-
tactic constituents completely falling inside the seg-
ment are selected as tokens. Note that this strategy
provides a set of sequential tokens covering the com-
plete sentence. Also, it is independent of the syn-
tactic annotation explored, given it provides clause
boundaries — see (Màrquez et al., 2005) for more
details.

Due to this pre-processing stage, the upper-bound
recall figures are 95.67% for Model 1 and 90.32%
for Model 2 using the datasets defined in Section 6.

The nodes selected are labeled with B-I-O tags
(depending if they are at the beginning, inside, or
outside of a predicate argument) and they are con-
verted into training examples by considering a rich
set of features, mainly borrowed from state-of-the-
art systems. These features codify properties from:
(a) the argument constituent, (b) the target predicate,

Constituent type and head: extracted using common head-
word rules. If the first element is a PP chunk, then the
head of the first NP is extracted.
First and last words and POS tags of the constituent.
POS sequence: if it is less than 5 tags long.
2/3/4-grams of the POS sequence.
Bag-of-words of nouns, adjectives, and adverbs.
TOP sequence: sequence of types of the top-most syntactic
elements in the constituent (if it is less than 5 elements long).
In the case of full parsing this corresponds to the right-hand
side of the rule expanding the constituent node.
2/3/4-grams of the TOP sequence.
Governing category as in (Gildea and Jurafsky, 2002).
NamedEnt, indicating if the constituent embeds or
strictly matches a named entity along with its type.
TMP, indicating if the constituent embeds or strictly matches
a temporal keyword (extracted from AM-TMP arguments of
the training set).
Previous and following words and POS of the constituent.
The same features characterizing focus constituents are
extracted for the two previous and following tokens, provided
they are inside the clause boundaries of the codified region.

Table 1: Constituent structure features: Models 1/2

Predicate form, lemma, and POS tag.
Chunk type and type of verb phrase in which verb is
included: single-word or multi-word.
The predicate voice. We currently distinguish five voice
types: active, passive, copulative, infinitive, and progressive.
Binary flag indicating if the verb is a start/end of a clause.
Sub-categorization rule, i.e. the phrase structure rule that
expands the predicate immediate parent.

Table 2: Predicate structure features: Models 1/2

and (c) the distance between the argument and pred-
icate. The three feature sets are listed in Tables 1, 2,
and 3, respectively.1

Regarding the learning algorithm, we used gener-
alized AdaBoost with real-valued weak classifiers,
which constructs an ensemble of decision trees of
fixed depth (Schapire and Singer, 1999). We con-
sidered a one-vs-all decomposition into binary prob-
lems to address multi-class classification. AdaBoost
binary classifiers are then used for labeling test se-
quences, from left to right, using a recurrent sliding
window approach with information about the tag as-
signed to the preceding token. This tagging module
enforces some basic constraints, e.g., BIO correct
structure, arguments cannot overlap with clause nor
chunk boundaries, discard ARG0-5 arguments not
present in PropBank frames for a certain verb, etc.

1Features extracted from partial parsing and Named Entities
are common to Model 1 and 2, while features coming from full
parse trees only apply to Model 2.



Relative position, distance in words and chunks, and level of
embedding (in #clause-levels) with respect to the constituent.
Constituent path as described in (Gildea and Jurafsky, 2002)
and all 3/4/5-grams of path constituents beginning at the
verb predicate or ending at the constituent.
Partial parsing path as described in (Carreras et al., 2004)
and all 3/4/5-grams of path elements beginning at the
verb predicate or ending at the constituent.
Syntactic frame as described by Xue and Palmer (2004)

Table 3: Predicate–constituent features: Models 1/2

The syntactic label of the candidate constituent.
The constituent head word, suffixes of length 2, 3, and 4,
lemma, and POS tag.
The constituent content word, suffixes of length 2, 3, and
4, lemma, POS tag, and NE label. Content words, which
add informative lexicalized information different from
the head word, were detected using the heuristics
of (Surdeanu et al., 2003).
The first and last constituent words and their POS tags.
NE labels included in the candidate phrase.
Binary features to indicate the presence of temporal cue
words, i.e. words that appear often in AM-TMP phrases
in training.
For each TreeBank syntactic label we added a feature to
indicate the number of such labels included in the
candidate phrase.
The sequence of syntactic labels of the constituent
immediate children.
The phrase label, head word and POS tag of the
constituent parent, left sibling, and right sibling.

Table 4: Constituent structure features: Model 3

Model 3. The third individual SRL model makes
the strong assumption that each predicate argument
maps to one syntactic constituent. For example, in
Figure 1 ARG0 maps to a noun phrase, ARGM-LOC
maps to a prepositional phrase etcetera. This as-
sumption holds well on hand-corrected parse trees
and simplifies significantly the SRL process because
only one syntactic constituent has to be correctly
classified in order to recognize one semantic argu-
ment. On the other hand, this approach is limited
when using automatically-generated syntactic trees.
For example, only slightly over 91% of the argu-
ments can be mapped to one of the syntactic con-
stituents produced by the Charniak parser.

Using a bottom-up approach, Model 3 maps each
argument to the first syntactic constituent that has
the exact same boundaries and then climbs as high as
possible in the tree across unary production chains.
We currently ignore all arguments that do not map
to a single syntactic constituent.

The predicate word and lemma.
The predicate voice. Same definition as Models 1 and 2.
A binary feature to indicate if the predicate is frequent
(i.e., it appears more than twice in the training data) or not.
Sub-categorization rule. Same def. as Models 1 and 2.

Table 5: Predicate structure features: Model 3

The path in the syntactic tree between the argument phrase
and the predicate as a chain of syntactic labels along with
the traversal direction (up or down).
The length of the above syntactic path.
The number of clauses (S* phrases) in the path.
The number of verb phrases (VP) in the path.
The subsumption count, i.e. the difference between the
depths in the syntactic tree of the argument and predicate
constituents. This value is 0 if the two phrases share the
same parent.
The governing category, which indicates if NP
arguments are dominated by a sentence (typical for
subjects) or a verb phrase (typical for objects).
We generalize syntactic paths with more than 3
elements using two templates:
(a) Arg ↑ Ancestor ↓ Ni ↓ Pred, where Arg is the
argument label, Pred is the predicate label, Ancestor
is the label of the common ancestor, and Ni is instantiated
with all the labels between Pred and Ancestor in
the full path; and
(b) Arg ↑ Ni ↑ Ancestor ↓ Pred, where Ni is
instantiated with all the labels between Arg and
Ancestor in the full path.
The surface distance between the predicate and the
argument phrases encoded as: the number of tokens, verb
terminals (VB*), commas, and coordinations (CC) between
the argument and predicate phrases, and a binary feature to
indicate if the two constituents are adjacent.
A binary feature to indicate if the argument starts with a
predicate particle, i.e. a token seen with the RP* POS
tag and directly attached to the predicate in training.

Table 6: Predicate–constituent features: Model 3

Once the mapping process completes, Model 3
extracts a rich set of lexical, syntactic, and seman-
tic features. Tables 4, 5, and 6 present these features
organized in the same three categories as the previ-
ous Models 1 and 2 — see (Surdeanu and Turmo,
2005) for more details.

Similarly with Models 1 and 2, Model 3 trains
one-vs-all classifiers using AdaBoost for the most
common argument labels. To reduce the sample
space, Model 3 selects training examples (both posi-
tive and negative) only from: (a) the first clause that
includes the predicate, or (b) from phrases that ap-
pear to the left of the predicate in the sentence. More
than 98% of the argument constituents fall into one
of these classes.

At prediction time the classifiers are combined us-
ing a simple greedy technique that iteratively assigns



to each predicate the argument classified with the
highest confidence. For each predicate we consider
as candidates all AM attributes, but only numbered
attributes indicated in the corresponding PropBank
frame. Additionally, this greedy strategy enforces a
limited number of domain knowledge constraints in
the generated solution: (a) arguments can not over-
lap in any form, and (b) no duplicate arguments are
allowed for ARG0-5.

5 The Inference Model

The most important component of our inference
model is candidate filtering, which decides if a can-
didate argument should be maintained in the global
solution or not. Candidate filtering is implemented
as a single binary classifier that uses only features
extracted from the solutions provided by the individ-
ual systems. For robustness, we do not use any fea-
tures that are specific to any of the individual mod-
els, nor the confidence value of their classifiers.

Table 7 lists the features extracted from each can-
didate argument by the filtering classifier. For sim-
plicity we have focused only on attributes that: (a)
are readily available in the solutions proposed by the
individual classifiers, and (b) allow the gathering of
simple and robust statistics. For example, the fil-
tering classifier might learn that a candidate is to be
trusted if: (a) two individual systems proposed it, (b)
if its label is ARG2 and it was generated by Model 1,
or (c) if it was proposed by Model 2 within a certain
argument sequence.

The candidate arguments that pass the filtering
stage are incorporated in the global solution by the
conflict resolution module, which enforces several
domain specific constraints. We have currently im-
plemented two constraints: (a) arguments can not
overlap or embed other arguments; and (b) no du-
plicate arguments are allowed for the numbered ar-
guments ARG0-5. Theoretically, the set of con-
straints can be extended with any other rules, but in
our particular case, we know that some constraints,
e.g. providing only arguments indicated in the cor-
responding PropBank frame, are already guaranteed
by the individual models. Conflicts are solved with
a straightforward greedy strategy: the pool of candi-
date arguments is inspected in descending order of
the confidence values assigned by the filtering clas-

The label of the candidate argument.
The number of systems that generated an argument with
this label and span.
The unique ids, e.g. M1 and M2, of all the systems that
generated an argument with this label and span.
The argument sequence for this predicate for all the systems
that generated an argument with this label and span. For
example, the argument sequence for the proposition
illustrated in Figure 1 is: ARG0 - ARGM-TMP - P -
ARG1 - ARGM-LOC.
The number and unique ids of all the systems that generated
an argument with the same span but different label.
The number and unique ids of all the systems that generated
an argument included in the current argument.
The number and unique ids of all the systems that generated
an argument that contains the current argument.
The number and unique ids of all the systems that generated
an argument that overlaps the current argument.

Table 7: Features used by the candidate filtering
classifier.

sifier, and candidates are appended to the global so-
lution only if they do not violate any of the domain
constraints with the arguments already selected. Our
inference system currently has a sequential architec-
ture, i.e. no feedback is sent from the conflict reso-
lution module to candidate filtering.

6 Experimental Results

We trained the individual models using the complete
CoNLL-2005 training set (PropBank/TreeBank sec-
tions 2 to 21). All models were developed using
AdaBoost with decision trees of depth 4 (i.e. each
branch may represent a conjunction of at most 4 ba-
sic features). Each classification model was trained
for up to 2,000 rounds.

We applied some simplifications to keep training
times and memory requirements inside admissible
bounds: (a) we have limited the number of nega-
tive examples in Model 3 to the first 500,000; (b)
we have trained only the most frequent argument la-
bels: top 41 for Model 1, top 35 for Model 2, and
top 24 for Model 3; and (c) we discarded all features
occurring less than 15 times in the training set.

The models were tuned on a separate develop-
ment partition (TreeBank section 24) and evaluated
on two corpora: (a) TreeBank section 23, which
consists of Wall Street Journal (WSJ) documents,
and (b) on three sections of the Brown corpus, se-
mantically annotated by the PropBank team for the
CoNLL 2005 shared task evaluation. Table 8 sum-



WSJ PProps Precision Recall Fβ=1

Model 1 48.45% 78.76% 72.44% 75.47 ±0.8

Model 2 52.04% 79.65% 74.92% 77.21 ±0.8

Model 3 45.28% 80.32% 72.95% 76.46 ±0.6

Brown PProps Precision Recall Fβ=1

Model 1 30.85% 67.72% 58.29% 62.65 ±2.1

Model 2 36.44% 71.82% 64.03% 67.70 ±1.9

Model 3 29.48% 72.41% 59.67% 65.42 ±2.1

Table 8: Overall results of the individual models on
the WSJ and Brown test sets.

marizes the results of the three models on the WSJ
and Brown corpora. In that table we include the
percentage of perfect propositions detected by each
model (“PProps”), i.e. predicates recognized with
all their arguments, the overall precision, recall, and
Fβ=1 measure2.

The results summarized in Table 8 indicate that
all individual systems have a solid performance. Al-
though none of them would rank in the top 3 in this
year’s CoNLL evaluation (Carreras and Màrquez,
2005), their performance is comparable to the best
individual systems presented at that evaluation exer-
cise3. As expected, the models based on full parsing
(2 and 3) perform better than the model based on
partial syntax. But, interestingly, the difference is
not large (e.g., less than 2 points in Fβ=1 in the WSJ
corpus), evincing that having base syntactic chunks
and clause boundaries is enough to obtain a compet-
itive performance with a simple system.

Consistently with other systems evaluated on the
Brown corpus, all our models experience a severe
performance drop in this corpus, due to the lower
performance of the linguistic processors.

6.1 Performance of Combination Systems

We have trained the candidate filtering binary classi-
fier on one third of the training partition. Its training
data was generated using individual models trained
on the other two thirds of the training partition. The
classifier was developed using Support Vector Ma-
chines (SVM) with a polynomial kernel of degree 2.
We trained combined models for all 4 possible com-
binations of our 3 individual models.

2The significance intervals for the F1 measure have been ob-
tained using bootstrap resampling (Noreen, 1989). F1 rates out-
side of these intervals are assumed to be significantly different
from the related F1 rate (p < 0.05).

3The best performing SRL systems at CoNLL were a com-
bination of several subsystems. See section 7 for details.

Table 9 summarizes the performance of the com-
bined systems on the WSJ and Brown corpora.4

The combined systems are compared against a base-
line combination system, which merges all the argu-
ments generated by the individual systems. For con-
flict resolution, the baseline uses the greedy strategy
introduced in Section 5, but using as argument or-
dering criterion a radix sort that orders the candidate
arguments in descending order of: number of mod-
els that agreed on this argument; argument length in
tokens; and performance of the individual system5.

Table 9 indicates that our combination strategy is
always successful: the results of all combined sys-
tems improve upon their individual models and they
are better the baseline when using the same num-
ber of individual models. As expected, the highest
scoring combined system includes all three individ-
ual models. Its Fβ=1 measure is 2.35 points higher
than the best individual model (Model 2) in the WSJ
test set and 1.30 points higher in the Brown test
set. Somewhat surprisingly, the highest percentage
of perfect propositions is not obtained by the over-
all best combination, but by the system that com-
bines the two models based on full parsing (Models
2 and 3). This happens because Model 1 is the weak-
est performing of the bunch, hence its arguments,
while providing useful information to the filtering
classifier, decrease the number of perfect proposi-
tions when selected.

We consider these results encouraging given the
simplicity of our inference model and the limited
amount of training data used to train the candidate
filtering classifier. Additionally, they compare fa-
vorably with respect to the best performing systems
at CoNLL-2005 shared task (see Section 7).

6.2 Upper Limit of the Combination Strategy

To explore the potential of our approach we have
constructed a hypothetical system where our candi-
date filtering module is replaced with a perfect clas-
sifier that selects only correct arguments and dis-
cards all others. Table 10 lists the results obtained
on the WSJ and Brown corpora by this hypothetical
system using all three individual models.

4For conciseness, in Table 9 we introduced the notation
M1+2+3 to indicate the combination of Models 1, 2, and 3

5This combination produced the highest-scoring baseline
model.



WSJ PProps Prec. Recall Fβ=1

M1+2 51.30% 81.30% 74.13% 77.55 ±0.7

M1+3 47.26% 81.21% 73.36% 77.08 ±0.8

M2+3 52.65% 81.55% 75.30% 78.30 ±0.7

M1+2+3 51.64% 84.89% 74.87% 79.56 ±0.7

baseline 51.09% 77.29% 78.67% 77.98 ±0.7

Brown PProps Prec. Recall Fβ=1

M1+2 35.95% 73.70% 62.93% 67.89 ±2.0

M1+3 28.98% 72.83% 58.84% 65.09 ±2.2

M2+3 37.06% 73.89% 63.30% 68.18 ±2.2

M1+2+3 34.20% 78.66% 61.46% 69.00 ±2.1

baseline 33.58% 67.66% 66.01% 66.82 ±1.8

Table 9: Overall results of the combination models
on the WSJ and Brown test sets.

Perfect props Precision Recall Fβ=1

WSJ 70.76% 99.12% 85.22% 91.64
Brown 51.87% 99.63% 74.32% 85.14

Table 10: Performance upper limit on the test sets.

Table 10 indicates that the upper limit of proposed
approach is relatively high: the Fβ=1 of this hy-
pothetical system is over 12 points higher than our
best combined system in the WSJ test set, and over
16 points higher in the Brown corpus. These re-
sults indicate that the potential of our combination
strategy is high, especially when compared with re-
ranking strategies, which are limited to the perfor-
mance of the best complete solution in the candidate
pool. By allowing the re-combination of arguments
from the individual candidate solutions we raise this
threshold significantly. Table 11 lists the contribu-
tion of the individual models to this upper limit on
the WSJ corpus. For conciseness, we list only the
“core” numbered arguments. “∩ of 3” indicates the
percentage of correct arguments where all 3 mod-
els agreed, “∩ of 2” indicates the percentage of cor-
rect arguments where any 2 models agreed, and the
other columns indicate the percentage of correct ar-
guments detected by a single model. Table 11 indi-
cates that, as expected, two or more individual mod-
els agreed on a large percentage of the correct argu-
ments. Nevertheless, a significant number of correct
arguments, e.g. over 22% of ARG3, come from a
single individual system. This proves that, in order
to achieve maximum performance, one has to look
beyond simple voting strategies that favor arguments
with high agreement between individual systems.

∩ of 3 ∩ of 2 M1 M2 M3
ARG0 80.45% 12.10% 3.47% 2.14% 1.84%
ARG1 69.82% 17.83% 7.45% 2.77% 2.13%
ARG2 56.04% 22.32% 12.20% 4.95% 4.49%
ARG3 56.03% 21.55% 12.93% 5.17% 4.31%
ARG4 65.85% 20.73% 6.10% 2.44% 4.88%

Table 11: Contribution of the individual systems to
the upper limit, for ARG0–ARG4 in the WSJ test set.

WSJ Brown
PProps Fβ=1 PProps Fβ=1

koomen 53.79% 79.44 ±0.8 32.34% 67.75 ±1.8

haghighi 56.52% 78.45 ±0.8 37.06% 67.71 ±2.0

pradhan 50.14% 77.37 ±0.7 36.44% 67.07 ±2.0

Table 12: Results of the best combined systems at
CoNLL-2005.

7 Related Work

The best performing systems at the CoNLL-2005
shared task included a combination of different base
subsystems to increase robustness and to gain cover-
age and independence from parse errors. Therefore,
they are closely related to the work of this paper.
Table 12 summarizes their results under exactly the
same experimental setting.

Koomen et al. (2005) used a 2 layer architecture
similar to ours. The pool of candidates is generated
by running a full syntax SRL system on alternative
input information (Collins parsing, and 5-best trees
from Charniak’s parser). The combination of can-
didates is performed in an elegant global inference
procedure as constraint satisfaction, which, formu-
lated as Integer Linear Programming, can be solved
efficiently. Interestingly, the generalized inference
layer allows to include in the objective function,
jointly with the candidate argument scores, a num-
ber of linguistically-motivated constraints to obtain
a coherent solution. Differing from the strategy pre-
sented in this paper, their inference layer does not
include learning. Also, they require confidence val-
ues from individual classifiers. This is the best per-
forming system at CoNLL-2005.

Haghighi et al. (2005) implemented a double re-
ranking model on top of the base SRL models to se-
lect the most probable solution among a set of can-
didates. The re-ranking is performed, first, on a set
of n-best solutions obtained by the base system run
on a single parse tree, and, then, on the set of best-
candidates coming from the n-best parse trees. The



re-ranking approach allows to define global complex
features applying to complete candidate solutions to
train the rankers. The main drawback, compared to
our approach, is that re-ranking does not permit to
combine different solutions since it is forced to se-
lect a complete candidate solution. This fact implies
that the performance upper limit strongly depends
on the ability of the base model to generate the com-
plete correct solution in the set of n-best candidates.

Finally, Pradhan et al. (2005b) followed a stack-
ing approach by learning two individual systems
based on full syntax, whose outputs are used to
generate features to feed the training stage of a fi-
nal chunk-by-chunk SRL system. Although the fine
granularity of the chunking-based system allows to
recover from parsing errors, we find this combina-
tion scheme quite ad-hoc because it forces to break
argument candidates into chunks in the last stage.

8 Conclusions

This paper introduces a novel, robust combination
strategy for semantic role labeling. Our approach
is separated in two stages: a candidate generation
phase, which combines the solutions generated by
several individual models into a pool of candidate ar-
guments, followed by a simple inference model that
filters the candidate arguments using a single binary
classifier and then enforces an arbitrary number of
domain-specific constraints.

The proposed approach has several advantages.
First, because it combines the solutions provided by
the individual models, the inference model can re-
cover from errors produced in the generation phase.
Second, due to the diversity of the individual models
employed, the candidate pool contains a high per-
centage of the correct arguments. And lastly, our
approach is flexible and robust: it can incorporate
any SRL model in the candidate generation stage
because it does not require that the individual SRL
models provide any information, e.g. classification
confidence values, other than an argument solution.

Our results are better than the state of the art us-
ing automatically-generated syntactic information.
These results are encouraging considering the sim-
plicity of the proposed approach.

Acknowledgments

This research has been partially supported by the
European Commission (CHIL project, IP-506909).
Mihai Surdeanu is a research fellow within the
Ramón y Cajal program of the Spanish Ministry of
Education and Science.

References
X. Carreras and L. Màrquez. 2004. Introduction to the CoNLL-

2004 shared task: Semantic role labeling. In Proceedings of
CoNLL 2004.

X. Carreras and L. Màrquez. 2005. Introduction to the CoNLL-
2005 Shared Task: Semantic Role Labeling. In Proceedings
of CoNLL-2005.

X. Carreras, L. Màrquez, and G. Chrupała. 2004. Hierarchical
recognition of propositional arguments with perceptrons. In
Proceedings of CoNLL 2004 shared task.

D. Gildea and D. Jurafsky. 2002. Automatic labeling of seman-
tic roles. Computational Linguistics, 28(3).

A. Haghighi, K. Toutanova, and C. Manning. 2005. A joint
model for semantic role labeling. In Proceedings of CoNLL-
2005 shared task.

P. Kingsbury, M. Palmer, and M. Marcus. 2002. Adding se-
mantic annotation to the Penn Treebank. In Proceedings of
the Human Language Technology Conference.

P. Koomen, V. Punyakanok, D. Roth, and W. Yih. 2005. Gen-
eralized inference with multiple semantic role labeling sys-
tems. In Proceedings of CoNLL-2005 shared task.

L. Màrquez, P. Comas, J. Giménez, and N. Català. 2005. Se-
mantic role labeling as sequential tagging. In Proceedings of
CoNLL-2005 shared task.

S. Narayanan and S. Harabagiu. 2004. Question answering
based on semantic structures. In International Conference
on Computational Linguistics (COLING 2004).

E. W. Noreen. 1989. Computer-Intensive Methods for Testing
Hypotheses. John Wiley & Sons.

S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. H. Martin, and
D. Jurafsky. 2005a. Support vector learning for semantic
argument classification. Machine Learning, to appear.

S. Pradhan, K. Hacioglu, W. Ward, J. H. Martin, and D. Juraf-
sky. 2005b. Semantic role chunking combining complemen-
tary syntactic views. In Proceedings of CoNLL-2005.

R. E. Schapire and Y. Singer. 1999. Improved boosting algo-
rithms using confidence-rated predictions. Machine Learn-
ing, 37(3).

M. Surdeanu and J. Turmo. 2005. Semantic role labeling using
complete syntactic analysis. In Proceedings of CoNLL-2005
shared task.

M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth. 2003.
Using predicate-argument structures for information extrac-
tion. In Proceedings of ACL 2003.

N. Xue and M. Palmer. 2004. Calibrating features for semantic
role labeling. In Proceedings of EMNLP-2004.


