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ABSTRACT

The need for high performance and throughput Question
Answering (QA) systems demands for their migration to
distributed environments. However, even in such cases it
is necessary to provide the distributed system with cooper-
ative caches and load balancing facilities in order to achieve
the desired goals. Until now, the literature on QA has not
considered such a complex system as a whole. Currently, the
load balancer regulates the assignment of tasks based only
on the CPU and I/O loads without considering the status
of the system cache.

This paper investigates the load balancing problem propos-
ing two novel algorithms that take into account the dis-
tributed cache status, in addition to the CPU and I/O load
in each processing node. We have implemented, and tested
the proposed algorithms in a fully fledged distributed QA
system. The two algorithms show that the choice of using
the status of the cache was determinant in achieving good
performance, and high throughput for QA systems.
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1. INTRODUCTION

Traditional information retrieval (IR) engines provide sear-
ches based on keywords to retrieve a relevant document.
Despite that they are indisputably useful, many searches
target only a very short part of a document, like a paragraph
or an entity. It is difficult to achieve the desired precision
of an answer without a deeper understanding of the docu-
ment content. Thus, the trend in the foreseeable future is
that IR systems are going to increase their computational
costs to read and analyze the documents. We take Question
Answering (QA) as an example of systems with such addi-
tional costs and we target the problem of how to distribute
properly the load in a distributed system.

Load balancing algorithms implemented in distributed sys-
tems assign the tasks to each node in such a way that all
the resources available are used evenly. In order to achieve
the best performance, it is necessary to feed the load balanc-
ing algorithm with an estimation of the resources needed for
each task as close as possible to the real needs of the task.
There are different types of load balancing algorithms based
on dynamic or static techniques, in other words, algorithms
that take or do not take into account the evolution of the en-
vironment. Most of those algorithms are based on modeling
only the CPU [24], the disk I/O [7], or both [22], but none
of them is aware of the cache contents in the system, the
CPU load, and the I/O load. If the cost to process a task is
incorrectly estimated, the solutions to rebalance the tasks in
a distributed system may be cumbersome, leading either to:
(a) aborting a task in the overloaded node, and transferring
it to a different node [12], or (b) migrating a task preemp-
tively from one computer to another [18]. In both cases, the
impact on the system is important and it adds processing
overhead and additional network communications.

Information retrieval systems, which are distributed in
clusters, often implement data caches that can reduce sig-
nificantly the computing time of a task. In this scenario,
the load balancing algorithm could overestimate the cost of
some tasks, leading to undesired imbalances. We build a
simple simulation model (described in [10]) to quantify the
potential imbalance introduced by cached data. The plot in
Figure 1 shows the parametrization of this model for a dis-
tributed system that estimates the imbalance whose origin
is the cache. We model a non cache-aware load balancing
algorithm, that assigns a set of tasks to the nodes in the



network. Some nodes become underloaded because their as-
signed tasks have their data cached and take a shorter time
to be finished, whereas some nodes will be overloaded be-
cause their tasks do not have their data cached. Figure 1
plots the percentage of nodes that are idle depending on
the system hit rate. We observe that, for large hit rates,
a vast majority of the nodes are imbalanced, which shows
that placing an effort on the use of information about the
caching system may improve the balance of the system.

The main contribution in this paper is the proposal of two
dynamic load balancing algorithms that consider all the fac-
tors that affect the performance of a QA system: the CPU,
the I/O and the cache. We decompose the execution of a
query into multiple tasks and we trigger our load balancing
algorithms at different stages during the execution of a query
to improve the distributed system performance. We target
complex systems where all the tasks do not behave homo-
geneously: each task has a different CPU and 1/O usage.
Moreover, the final cost to process a task varies according
to the current state of the caches in the system. Thus, the
load balancing algorithm must be aware of the resources and
the cached contents in the cluster, in order to pick the best
node to continue the execution of a query.

The first algorithm proposed, Probability Cost (PC), esti-
mates the cost of processing a task of the query depending on
where the information is located in the distributed coopera-
tive cache of the system, and the current CPU and I/O loads.
The second algorithm, Affinity (AF), additionally takes into
account the frequency of accesses to the documents in the
past to exploit the data locality for future queries. More-
over, AF is able to divide unevenly the workload to get a
larger benefit of the cache and use the disk and the CPU
more efficiently.

As a second contribution of this paper, we apply PC and
AF to a fully fledged distributed QA system that we have
built [9]. The execution time of our QA system is domi-
nated by two tasks: the retrieval of documents from disk
and the processing of those documents with natural lan-
guage tools. The first task requires a large amount of 1/0,
whereas the second task consumes many processor cycles.
In our distributed system, we have a distributed collabora-
tive cache for the raw disk documents and for the processed
documents. Our algorithms decide where each of those two
tasks are executed, taking into account how the CPUs and
disks are occupied, and where the most relevant data for
their execution is stored in the distributed cache.

As a third contribution of this paper, we compare our pro-
posals to the best previous contributions for QA, Weighted
Average Load (WAL) [22]. First of all, our algorithms be-
have better than WAL with a speed up of 1.38. Second, for
environments where the cost of the document processing is
light, AF behaves better, while in the other cases, it is PC
that does so. Third, our load balancing algorithms allow
our QA system to obtain a significant throughput with an
average of 6.27 queries answered per second, compared to
the 4.55 queries for the baseline algorithm.

Paper structure: The paper is organized as follows. In
Section 2, we give a brief description of our QA system,
and how the distributed architecture is organized. Then,
Section 3 describes the load balancing algorithms tested in
this paper: first the non cache-aware and continuing with
the new load balancing algorithms. Following, we report
the experimental evaluation of the load balancing techniques
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Figure 1: Fraction of nodes imbalanced from a clus-
ter of 1024 nodes.

for a wide variety of configurations in Section 4. Section 5
reviews some of the related work. Finally, we draw some
conclusions and expose our ideas for future work.

2. QA ARCHITECTURE

In this paper, we use a fully-fledged factoid QA system,
whose implementation details are presented in [9]. We depict
the system modules in Figure 2. The implementation of the
QA system follows a traditional architecture of a pipeline
with several sequential computing blocks: (i) Question Pro-
cessing (QP), which analyzes the query, understands the
question focus, and transforms the natural language ques-
tion into a computer data structure; (ii) Passage Retrieval
(PR), which is an IR system that obtains from disk the set
of the most relevant documents for a query; and (iii) An-
swer Extraction (AE), which applies natural language tools
to process the documents read in PR and identifies the most
relevant answers for the query. The system is modular and
we can vary its configuration to test its performance in dif-
ferent environments.

From a data processing perspective, our QA system im-
plements a two-layered architecture: first, we extract the
relevant content from documents that are lexically close to
the input question, and second, we semantically analyze
this content to extract and rank short textual answers to
this question, e.g., named entities such as person, organi-
zation, or location names. Because both these blocks are
resource intensive, the former in disk accesses and the lat-
ter in CPU usage, we implement a caching layer after each
stage. The first layer caches the documents read from disk
in PR, and the second caches the document analysis coming
from AE. This local cache configuration is analyzed in [9].
This system obtained state-of-the-art performance in an in-
ternational evaluation [21]

2.1 TheDistributed Architecture

In order to build a distributed system, we replicate the
local system in each node of the network. QA systems with
text collections that are too large to be replicated can par-
tition the collection and assign each partition to a group
of nodes [4], in which each group behaves similarly to our
architecture. On top of the QA system, we deploy a coop-
erative cache using an algorithm similar to ICP [23]: a node
can query the rest of nodes in the network to retrieve the
data associated to a document identifier (it is possible to
retrieve the data for PR and for AE: the full raw text of
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Figure 2: Diagram of the three computing blocks of our QA system: QP, PR and AE. We implement two
scheduling points, for PR (a) and AE (b), where the execution can continue locally or be forwarded to a
different node. The cache manager stores the documents retrieved from disk in PR, and the processed data
generated in AE. (c) Request a document in the cooperative cache. (d) Send the requested data.

the document as well as its natural language analysis); and
if any node has the contents available in its cache, it sends
the requested data to the querying node (operations (c) and
(d) in Figure 2). Once the data is received, it is added to
the cache of the requester node. Following this procedure,
any node can see the cache contents of the rest of nodes that
belong to the distributed QA system.

Each query runs in its own thread, so several queries can
be simultaneously executed in a node, even if they are ex-
ecuting the same computing block. In our system, the set
of CPUs on a node share a waiting queue for pending tasks.
We allow one more task than CPUs in order to avoid hav-
ing multiple threads competing for the same resources. If a
query is going to start the execution of a computing block
and there are no resources available, the computing block is
queued until another computing block finishes.

The scheduling points: We add two scheduling points to
the system, which are depicted in Figure 2. The PR schedul-
ing point (a) is triggered after the query reads the indexes
from the document collection and computes the list of the
document identifiers that will be read from disk, and be-
fore the complete documents are read from disk. The AE
scheduling point (b) is situated after the documents are read
from the disk and before they are processed by the natural
language tools. PR and AE are the most expensive tasks
of the QA system with more than 98% of the execution
time. Queries that reach a scheduling point know the set
of document identifiers involved in the current task of the
query, before the expensive computation starts. We use the
variable Dataqsk(q),q) to refer to the size of this set of iden-
tifiers. Data(pr,q) is the number of documents that q read
in PR. Data(4g q) is the number of documents that will be
analyzed by the natural language tools. Note that, due to
a filtering step following PR, the set of documents that are
processed in AE is typically about one order of magnitude
smaller than the set of documents read from disk in PR.

When a query reaches the scheduling point, the node trig-
gers the load balancing algorithm to decide in which node
the query is going to continue its execution. If the load
balancing algorithm decides that the query should continue
running locally, then the query continues its execution im-
mediately, or it is queued if there are no resources available
for that task. If the load balancing algorithm selects a re-
mote node, the query is packed and transferred to the se-
lected node. Each time a query finishes a computing block
in the system, all the queued queries are rescheduled by the
load balancing algorithm again with the updated stats from
the rest of nodes. A query that is waiting in the queue to
be executed locally can thus be rescheduled and assigned
to a new node because, for example, the remote node has
new cached contents or is less loaded. In order to simplify
our architecture we limit to one the number of forwards per
computing block, i.e. a query assigned to a node for AE
can not be forwarded again to compute the AE block. How-
ever, it is possible that a query is forwarded in each of the
computing blocks: once for PR and once more for AE.

Measuring the system load: Each node ¢ measures its
current load in two dimensions: one for the I/O (Load{g)

and another one for the CPU (Loadgf’U). Each node sends
its load measure to the rest of the nodes in the network pe-
riodically or if their current value differs more than fraction
since its last update. Summarizing, all the nodes compute
their local load, and receive recent load stats from all the
computing nodes. Additionally, we use this periodic com-
munication to detect when a node is not available, and when
a new computing node has joined the network.

Our load balancing algorithms combine the two dimen-
sions of the load measure to select the most suitable server
to continue the execution of a query. The CPU load of i
is calculated as the aggregated CPU time that is necessary
to complete the current computing block of the queries as-



signed to @Q; (this includes the queries that are currently
running and the queries waiting in the queues):

CPU CPU
Load( = 37 (Ol - Datattasnin . ) -
qEQ;

where Cgf,f.f(q) is the average cost, measured in time, that it
takes to process a data unit in the current computing block
of query q. The system measures the cost to process a com-
puting block dynamically according to the recent history,
and for each of the computing blocks. So, the system stores
a different cost for each of the three different tasks: C’(%};%

C’(Cpﬁ)g and C(CXE[;. The system records the time spent in each
different computing block of the recent queries answered by
the node, and sets C’(thsl]i(q)) as the average time spent by
the previous queries. Note that, although two queries are
in the same computing block, the load contribution from a
query that accesses a large number of documents is heav-
ier than for a query that accesses a few documents because
the number of units to process is larger (Data(iask(q),q))- A

similar procedure is used to calculate Loadfi/)o, and all the
associated information related to 1/0.

State of the distributed cache: The distributed QA sys-
tem implements an algorithm to monitor the state of the
caches in each node of the network efficiently. Each node
mantains a data structure, called Evolutive Summary Coun-
ters (ESC, described in [8]), that keeps a record of the re-
cent documents accessed in a node (during both PR and
AE). ESC monitors what documents are accessed in each
node, and it can be used to monitor the current state of
the distributed cache. The data structure can be shared by
different cache-aware algorithms, for different purposes, and
its computation cost can be amortized by the different algo-
rithms. For example, the same ESC can be used to reduce
the number of queries to locate a document in the network,
or to improve the cache hit rate with a placement algorithm
of the data [8]. In this paper, we focus on the load balancing
problem and we use ESC as a tool to provide information of
the global cache state to our load balancing algorithms.

An ESC is similar to the summary caches proposed by
Fan [11]: both report recent information about the nodes
in the network. Both structures use Count Bloom Filters
(CBF), that is a variant of Bloom Filters [3] to count the
number of elements in a set. Like Bloom Filters, a CBF is
very compact because they keep an approximate count that
can differ from the real value, with a fraction of error that
can be tuned as desired. In both proposals, summary coun-
ters and ESC, each count filter is active for a certain period
of time in a round robin fashion and, at certain intervals of
time, each computing node generates a summary of its local
CBF's and sends the summary to the rest of nodes. However,
the summary caches report only the current contents in the
cache, while the ESC summaries cover all the documents
read in the recent history. This difference is important be-
cause an ESC contains information about the usage of non
frequent documents, which may not be cached, and that we
apply to improve the load balancing. All in all, in our QA
system, each node receives an ESC summary from each node
in the network: the ESC summary received from a node ¢
contains the number of times that document d has been read
recently in i, ESC;(d). Note that the ESC only use the net-
work during periodic updates. However, a node can check

at any moment the number of times a document has been
accessed in a certain node without any new communication.

Our load balancing algorithms check the ESC summary
received from a node to estimate the probability that a cer-
tain document is cached in that node. The probabilities
are calculated using the location procedure described in [§],
which estimates the probability that a document d is cached
at a certain node ¢, Pges). The value of Pi¢;y is computed
dynamically according to the number of recent accesses to d
in that node'. Our cache-aware algorithms use this proba-
bility to estimate which nodes contain a document with high
probability, and the probability that the document can be
found in a certain node of the network.

3. LOAD BALANCING TECHNIQUES

We divide the reported algorithms into two categories:
non cache-aware algorithms, and cache-aware algorithms.
Each of these techniques is executed every time a query
reaches a scheduling point. The load balancing algorithm
selects a node, s, that will continue the execution of the
query. s is a node that belongs to the set of available com-
puting nodes in the network .

3.1 Non cache-aware algorithms

Here, we describe three caching algorithms that do not
take into account the cache contents. The first two algo-
rithms perform a distribution of the work that is not aware
of the tasks executed. The third algorithm is used to sched-
ule jobs that need to use the CPU as well as the disks, as
in the QA case. We use these algorithms as a baseline to
compare against the cache-aware algorithms.

Round robin (DNS): There is no dynamic load balanc-
ing algorithm in the cluster. The client sends the queries to
the nodes in the cluster following a round robin policy. Each
query is executed in a single node, hence s is always the lo-
cal host. This technique simulates a DNS-like load balancing
scheme. Note that the DNS-based policies in the internet,
suffer from imbalances produced by the DNS caches in the
network [5], that we omit here.

Random: This method picks the node s at random from
the available servers in the system. This method does not
take into account the load in each node to take the decision.

Weighted Average Load (WAL): This algorithm, de-
scribed in [22], assigns the query ¢ to the least loaded node
in the system according to the CPU and I/O usage of g. This
algorithm is CPU and I/O aware. Once the query reaches a
scheduling point, WAL estimates the cost to calculate ¢ in
each node of the network, and picks s as the node with the
lowest weighted average load:

SWAL = arg {21}{} (W(%PU . Loadng + W(Iq/)o . Loadgi/)o + C(i)) s
(1)

where Wg)PU is the fraction of time that ¢ will spend in

—1

the CPU, Wi = CGll ) - [CG5 @) + O] - and
!The intuition behind the search algorithm in [8] is that the
more frequently a document is accessed, the more probable
it is cached in that node. So, each node estimates a different
hit probability for each different document access frequency.
This estimation is corrected in such a way that the proba-
bility of hit is increased for future queries, when a document
is found, and the probability is reduced otherwise.




W({I/)O is the analogous value for the I/O. (;) is a parameter
to reduce the number of forward operations if the amount of
imbalance is small: if 4 is the local node ((;y is 0, and other-
wise it is the average time to compute the next computing
block of q. Hence, a query is only forwarded when the gain
produced by its forwarding is bigger than its own cost in the
current node. If several nodes have the same averaged load
a random one is chosen among them.

3.2 Cooperative Cache-Aware Algorithms

Cooperative caching is an effective technique to reduce
the execution time of document retrieval systems [9]. In a
system with a cooperative cache, the queries can retrieve
data not only from the local cache in the node, but also
to request the data cached in the memory of remote nodes.
Thus, the execution time of a query does not only depend
on the local cache information but also on the global state
of the cluster. Load balancing techniques need to estimate
the cost to process a task as accurately as possible in order
to make better decisions. Hence, it is beneficial to integrate
the cache state into the load balancing algorithms to improve
the accuracy of the estimation. Our proposals rely on the
information distributed by the ESC-summaries, described
in Section 2. Note that the cost to process a cache miss is
much higher than the cost to inspect the ESC summaries,
so using ESC pays off.

Our algorithms are fully distributed and do not have any
centralized process. Thus, even if a subset of nodes in the
network crash or have to be added to the system, our system
adapts to these dynamic changes.

In this paper, we implement two algorithms:

Probability Cost (PC): This algorithm modifies WAL to
include the impact of a cache hit in the query cost. PC
changes the formula to compute Cg:;%(q)ﬁ which we refer

now as C(task(q) §)- O(task(q) ;) defines the CPU cost to exe-
cute the task q, or in other words, the additional load added
to the system if g is executed on node i. The new formula re-
flects the load reduction produced by the cached data. The
new value is the weighted sum of costs to process a docu-
ment depending on the cache state of the N nodes in the net-
work: a local hit, a remote hit or a cache miss (Cgfﬁtask(q)y

CPU CPU .
CRHIT(task(q))7 OMISS(task(q)): respectively):

CPU cPy
Cétask:(q),i) = Zdetask(q) |: CHIT(t”'Sk(q)) ’ P(dei) +
+ Cg};?T(task(q)) : P(d¢i/\d€N) +
+ Cz%ﬁgs@ask(q)) : P(daéN)]

The probability to find a document in node 7, P4c), is
estimated by the location procedure. The probability of a
miss, Pq¢n), can be calculated with the assumption that the
cache contents in each node are independent among them:
Pragny = I1;e v (1= Praciy). The probability of a remote hit,
Pagindeny, stands for the documents that are neither local
hits nor misses: Praginacn) = 1 — (Placi) + Pragny)- Then,
we estimate the cost of a hit/remote hit/miss, ngfg(q),i),
in each computing block using the costs recorded for the
last k queries answered by the node. Finally, we apply an
analogous procedure to obtain C’(mék(q) - PC calculates

the local load in a node according to the new procedure to

calculate C250Y 1.0, and C’;{l/oocalhost
the rest of nodes like WAL.

Finally, we modify the server selection formula to indi-
cate wether the query will find the documents locally, or
it will retrieve them using the cooperative cache. The new
formula depends on the current query as well as the cooper-
ative cache contents because we add to the current load in
node ¢ the cost to process ¢ in i. The algorithm selects the
least loaded node according to the load in each node and the
state of the cache in each node:

, and sends its load to

CPU 1CPU

spc = argggi]{} {W( ) (Load(l) + C(task(q) 1)) +

1/0 1/o 110
+ Wi - (Loady” + Ciiigy.) + C(i)} .

The modified formula enforces the access to the informa-
tion locally. C( is lower for the nodes that have the infor-
mation locally avallable Even if remote hits are not much
more expensive than local hits, it is faster to access the in-
formation locally and reduce the network traffic.

Affinity (AF): This algorithm aims at combining two met-
rics to improve the performance of the system: the load in
each node, and the affinity between the data retrieved by
the query and the cache contents of a node. The first metric
is used to send the query to the node with more resources
available, the second tries to additionally exploit the locality
of accesses.

The nodes measure their current load in the same way as
in PC, which takes into account the cache hits. However, we
introduce a factor in the selection of the most suitable node,
9(i, q), that measures the affinity of a query g with the node
i. The modified formula for the node selection is:

cPU cPU cpPU
sAF = arg m1n |:19(1 @ (W(q) - (Loadg;y = + C(,task(q),i)) +

1/0

/0 1I1/0
+ W, . (Load(i) + C(task(q),z‘)) + C(i))i| !

(a)

Two properties are desirable to estimate the affinity of a
query with a node: (a) affinity is higher for the nodes where
the data is cached, and it is lower for the rest of nodes; (b)
it gives more weight in the score to rare documents because
it is preferable to replicate popular documents rather than
rare ones in the network. Although other formulas may be
applied? , we calculate ¥ with a popular relevance formula
used in IR, the ¢f - idf [19]. IR focuses on finding the set
of documents most relevant to a given input query. Both
the input query and the collection documents are modeled
as a vector of keywords. In our case, we use tf - idf to find
the system nodes that best fit to respond to a given cache
request. Thus, in our situation the query is composed of
the document identifiers requested from the cache, and each
node is modeled as the vector of recent document accesses
obtained from its ESC summary. 7'f in the node vector is
computed as the number of times that the node has read the
corresponding document recently. Note that AF does not
look up the document content to load balance the system.
We estimate tf - idf as follows:

2In our experiments tf - idf showed a better behavior than
other similar approaches as idf alone.
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In information retrieval ¢t f -idf is used because some terms
are more relevant for the query than others. Nevertheless, in
our case the intuition to use tf - idf is slightly different. On
the one hand, the ¢f determines the number of times that a
document has been read. The higher the ¢f, the larger the
probability of the document to be in the cache. In case we
had only used t f, the server selection process would be domi-
nated by the popular documents requested by the query, and
consequently, infrequent documents would be transferred to
the remote nodes with popular documents. Therefore, by
only using ¢ f we would replicate rare documents while pop-
ular ones would be more centralized. The use of idf aims
at solving this problem by giving an estimate of whether a
document is rare or popular. Thus, in our ¥; 4 function,
rare documents have more weight in the calculation of the
affinity score, and so, the chances that they are accessed lo-
cally are higher, and consequently fewer replicas are cached.
This behavior reduces the global load of the system because
the data is available locally, obtaining a more efficient use
of the available resources.

3.3 Comparison example

We illustrate the differences between the three main load
balancing algorithms proposed (WAL, PC and AF) with an
example of a distributed QA system composed of four nodes.
Figure 3 shows the system state at a given time: each node
has information about the load and the ESC summary of the
rest of nodes. In this example, node 4 is overloaded and is
going to forward the execution of the query Qs to the most
suitable node in the network. In order to simplify the exam-
ple, we assume that (i) the current task of Qs does not need

1/0 (W(Iés = 0), and (ii) if £ESC(,) # 0, then document x

is cached in that node. The picture distinguishes how the

cluster computes its current load using a non cache-aware
algorithm (WAL) versus a cache-aware (PC and AF). In the
former, nodes 1 and 2 report a long execution queue but
this is inaccurate because their assigned queries are cached
and they will take very short time to be completed. In the
latter, nodes 1 and 2 compute a more accurate load because
they are cache-aware.

WAL assigns Qs to node 3 that it is the “less” loaded node
according to its information. However, this is not a good
choice because node 3 has to compute query (3 that is not
cached, and it will take a long time to complete. Although
nodes 1 and 2 report longer queues, the queries in these
nodes have their data cached in memory and they will finish
much earlier than Q3.

Cache-aware algorithms report a more accurate state of
the system load: both PC and AF send a lower load for
nodes 1 and 2 because their data is cached. Both nodes, 1
and 2, are missing one of the documents (node 1 is miss-
ing A, and node 2 is missing B). Thus, if Qs is executed in
node 1 document B would be replicated twice in the net-
work (in nodes 1 and 2); if Qs is executed in node 2 doc-
ument A will be replicated in all the nodes of the network.
On the one hand, PC sends Qs either to the node 1 or 2
because they have the same load, which is the lowest among
the available nodes. On the other hand, AF picks node 2
to process Qs because document A is very popular and B
is not, and consequently, the idf score is much larger for
node 2: ¥(1,04) < ¥(2,4)- Although, in this example Qs is
going to be completed equally as fast either in node 1 or 2,
the choice of AF is superior if we look into what happens
for the next queries. According to the recent history, future
queries are going to request more often document A than
document B. For example, suppose the next query that ar-
rives, Q11, only reads document A. In case Qs was executed
in the node 1 three nodes would have the information locally
cached for @11, but if Qs was executed in node 2 all four
nodes would have the information locally cached. By the
time @11 arrives, the load in each node may have changed
drastically, and any of the nodes may be idle. AF ensured
that @11 finds all the information cached locally indepen-
dently of which node is underloaded, PC may need remote
accesses if Q11 is assigned to node 2 and document A is not
already there.

4. EXPERIMENTAL RESULTS

Setup: For our tests we use a fully-fledged QA system
running on a cluster of 16 nodes connected with a gigabit
Ethernet network. Each node in the system is equipped with
an Intel dual core CPU at 2.4GHz and 2GB of RAM. The
QA system was explained in Section 2. We use as the tex-
tual repository the TREC document collection [16] which
has approximately 4GB of text in 1 million documents. The
database in our experiments is replicated, and in case a doc-
ument is not available in cache, each node can load it from its
local disk. This strategy simulates a distributed file system
tuned for read-only accesses, which is currently not avail-
able in our cluster. An additional computer is used as a
client that issues each new query to a different computer in a
round robin fashion. The question set contains 3000 queries
randomly selected following Zipfa—o0.59 and Zipfa—1.0 distri-
butions. We choose these distributions as a result of several
analyses of query logs from different web engines: the former
due to a study from Saraiva et al. [20] where they analyzed
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Figure 4: Plots a, b, and c are the results for Zipf,—o.59. Plots d, and e are the results for Zipf,—: 0. In b, we
mark the sum of the remote and the local rate with large marks, and the local hit rate with small marks.

a query log which fitted a Zipfa—o0.59; and the latter as a
sample of more skewed distributions that can be found in
other studies such [2, 14]. The questions from the query
sets were selected from questions that were part of former
TREC-QA evaluations (700 different questions). The client
issues the queries to keep the system under a high load, with
an average of eight simultaneous queries per node.

The executions shown in the plots of this section include
all the times incurred by the different parts of the system
and the load balancing algorithms that we explain and test.

4.1 Comparison of load balancing algorithms

In this experiments, we compare the different load bal-
ancing algorithms for the two different query distributions
explained in the setup.

Distribution Zipf,—o.59: Plots a,b,c in Figure 4 show the
results for the Zipfa—o.59 distribution. In this plot, the hor-
izontal axis is the maximum number of documents that can
be stored in the cache. The vertical axis measure the aver-
age throughput (a), the hit rate (b) and the probability of
forwarding (c).

The first observation is that the simpler policies have poor
results: a DNS based approach is not advisable, and Ran-
dom is not competitive either with policies that are aware
of the execution costs. Random, in some cases, has less
throughput than DNS because the cost of forwarding a query
is not negligible: a transfer forces the system to pack all the
documents and data structures related to the query, transfer
them through the network, and unpack them in the receiv-
ing node. Moreover, Random is not aware of the load in
the destination node, so the transfer may increase the sys-
tem imbalance instead of reducing it. WAL gets a better
performance from the system because it combines the usage
of the different available resources simultaneously: the ac-

cesses to the disks and the CPU time. However, we see that
the knowledge of the cache contents is relevant when we use
a cooperative cache. Cache-aware algorithms increase the
throughput of the system for all the cache sizes tested: it
improves the throughput of WAL by 61%, and DNS by 88%.

We depict the hit rate obtained by each algorithm in Fig-
ure 4(b). Note that for each algorithm we plot two lines,
one with smaller marks and another one with larger marks,
for the local hits and the total hits respectively. The differ-
ence between the two lines indicates the amount of remote
hits in the system. We see the reason why AF gets the best
average throughput in Figure 4(a): it keeps a high locality
in the accesses to data (its local hit rate is larger than the
total hit rate of any of the other algorithms), and it limits
the number of replicas of infrequent documents so it can get
a better total hit rate. Both of these factors contribute to
increase the throughput of the system. Furthermore, Fig-
ure 4(b) highlights one of the limitations of the Random
and WAL policies: the small local hit rate. Even if a remote
hit using the cooperative cache is fast, a local cache access
is much faster. Random and WAL do not take into account
any locality so the majority of cache hits are remote, and
must be retrieved using the network. However, PC is cache-
aware and exploits better the cache locality better than non
cache-aware algorithms. So, the execution time of PC is
faster because the data is more often accessed locally.

The trend for all the load balancing algorithms, as the
cache size grows, is to increase the average throughput of the
benchmark because the system gets more hits. Nevertheless,
the hit rate increase is smaller as the cache grows because
we are approaching to the results with an infinite cache.

We also recorded the number of servers that a query visits
during its execution. We plot the probability that a query is
forwarded when it reaches a scheduling point in Figure 4(c).



We do not observe any influence of the cache size in the num-
ber of forward operations, all the algorithms show the same
behavior independently of the cache size. We see that among
all the algorithms, AF forwards fewer queries than the rest
of algorithms. This is because of the locality policy of AF:
in the AE scheduling point, the local node has increased the
affinity with the current query because it has accessed the
documents in PR, and the local node becomes a preferable
choice unless it is overloaded. In general, the forwarding rate
is high for all the algorithms, which is a sign that the load
balancing algorithms contribute to distribute the workload.
In a local network, forwarding is not particularly expensive,
but if nodes are not in the same local network, the forward
rate can be reduced by applying a bigger weight to enforce
the processing of the queries in the local network.

Distribution Zipf,—1.0 : Figure 4(d) shows the results
for the execution time but with a more skewed query set.
The shape of the results is similar as in Figure 4(a): cache-
aware algorithms are significantly better than the rest of
algorithms and AF is the best algorithm among all. We
observe that the increase in the skewness reduces the execu-
tion time of all the algorithms because the caches are more
effective for more skewed distributions. We do not include
the plot, but the number of nodes visited per query, for the
Zipfa=1.0 test, is similar to that shown in Figure 4(c).

We have also experimented with the system performance
varying the number of nodes in the distributed system. We

plotted the experiments as the system speed-up in Figure 4(e).

All the tested algorithms behave consistently for the differ-
ent number of processors and achieve a speed up superlinear,
which is a consequence of the use of the cooperative cache.
As we add more nodes to the cluster, the total amount of
memory dedicated to caching in the cluster grows and con-
sequently the number of cache hits in the cooperative cache
increases as well. We see that even if we use no load bal-
ancing algorithm (DNS) we obtain a superlinear speedup
because of the major efficiency of the cooperative cache.

Although DNS reaches a very good speed up, it creates
important imbalances that are stressed when the number of
nodes is increased. WAL detects those imbalances and is
able to transfer some of the work from the overloaded nodes
to the underloaded. However, the performance of WAL can
be improved. As predicted by the model, if the load algo-
rithm is not cache-aware it will not take the optimal deci-
sion because the information is not complete enough, hence
the additional cache information incorporated in AF and
PC makes them faster. The imbalance caused by the cache
grows with the number of nodes interconnected. For four
nodes, the influence of caching in the load balance is almost
none: PC and WAL get a similar speedup for four nodes.
However, for 16 nodes the execution time of WAL is 20%
larger than for PC. Finally, we observe that AF works bet-
ter than PC even for a 2 node cluster, where it is 5% faster,
because AF improves the efficiency of the cooperative cache.

For this query distribution, 16 nodes combined with the
biggest cache configuration tested, we reached the highest
throughput in the experiments, which is more than 6.25
queries per second (q/s). This corresponds to a speedup
of more than 100 over the original system, without a cache
system, in a single computer (whose throughput is 0.06 q/s);
and a speedup of 38.3 if we consider as baseline the system
with cache in one computer (0.16 q/s).
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Figure 6: Experiments for different AE modules.
Query set follows a Zipf,—1.¢ distribution

Uneven load vs. performance: In Figure 5 we show the
workload (in number of documents that are processed in
AE), and the CPU time per each node in the system. We
do not show the I/O load because it shows similar patterns.
For simplicity, we do not show the random algorithm be-
cause, as we showed in the previous section, its performance
is very similar to the DNS algorithm. PC and WAL are
the algorithms that balance the load more evenly. Here, we
confirm that the improvement of PC does not only come
from the small increase in the hit rate, but also from the
reduction of the idle time of the processors (we measured an
average CPU usage of 0.56, 0.63 and 0.65 for WAL, PC and
AF respectively).

Through these results, we can reinforce the fact that cache-
aware algorithms, although they may introduce a significant
imbalance of the workload in the system, they achieve a
better overall performance by making a better use of the
system resources. This can clearly be depicted in the AF
workload and CPU time plots: while nodes in the AF algo-
rithm present uneven peaks of workload compared to WAL
and DNS, the CPU time per node is significantly lower be-
cause of a better use of the available resources, that is to
say, a better load balancing strategy.

4.2 Impact of the Answer Extraction Module

The quality of a QA system depends on all its compo-
nents, but the dominant factor is the performance of the
AFE module. A more complex AE analysis of the documents
done by the AE module leads to a deeper understanding of
the text content and better extracted answers. Although a
system slower than the one used in the previous experiments
is not usable for interactive searching, in some situations it
may be desirable to use a more accurate system but with
longer response time.

In this section, we analyze the impact of the increase in the
computational complexity of the AE modules. Our objective
is to see how effective are the load balancing methods if we
have a different QA system, and see how adaptable the load
balancing techniques are.

Additional Setup: We change the original natural lan-
guage processing library (in the AE block) used in the ex-
periments in Section 4.1 from Maximum Entropy (ME) to
another library based on Support Vector Machines (SVM).
With this change we analyze the tradeoff between speed and
accuracy: our SVM classifiers perform better than ME, but
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Figure 5: Workload and CPU time consumption for each node in the system.

they are significantly slower. We build and test three differ-
ent system configurations:

e QA;: The base system that we used in the experiments
in Section 4. It uses a library based on ME and takes
an average time of 17 seconds per query.

e QAs: The system takes an average time of 70 seconds
per query and uses the new SVM library, which imple-
ments a medium complexity language model.

e QA3: The system takes an average time of 237 sec-
onds per query and uses the new SVM library, which
implements a high complexity language model.

In case all the data is found in the cooperative cache, ei-
ther locally or remotely, all the algorithms have the same be-
havior and take the same execution time because the natural
language processing module does not need to be triggered.

Results: We plotted the normalized execution time for
each of the QA systems in Figure 6. We use as horizon-
tal axis the average execution time per query (from left to
right the points represent QA1, QA2 and QAs). The vertical
axis is the normalized execution time. We see in this figures
that PC is better than WAL for all the configurations. The
addition of cache information reduces the execution time
between 17% and 8%, over a non cache-aware algorithm.
Actually, QA3 is much slower than QA;: the difference be-
tween PC and AF for QAs, measured in seconds, is twice
the corresponding difference for QA;. There are two rea-
sons why the relative execution time of PC and WAL gets
closer for heavier workloads as shown in Figure 6: (i) The
penalty for each miss is higher in heavier systems, i.e the
cost of a miss makes the difference between a local hit and
a remote hit negligible. And, (ii) WAL reports the expected
load in a node without cache knowledge. In heavy systems
the queries whose data is cached stay a tiny amount of time
in the node, compared to queries that must be completely
processed. Therefore, the noise in the load produced by a
cached query disappears relatively faster in heavy systems.
Thus, in heavier systems it is less relevant if the algorithm
is cache-aware or not.

Even if AF works very well for QA1, the performance of
AF degenerates to disappointing results for QA2 and QAs.
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Although the number of hits is similar independently of the
AE module, the very expensive cost of a miss in a heavy
system, makes the difference between a local hit and a re-
mote hit insignificant. This situation makes irrelevant the
locality of an algorithm, which was the main benefit of AF.
We also observe a tradeoff between global hit rates and the
load balancing of the algorithms. Figure 5 shows that AF
accumulates very large workloads in some nodes because AF
believes that they will be executed very fast. However, the
ESC values are not updated in real time and the search
probabilities are not 100% accurate. Thus, load balancing
algorithms have incomplete information and may make a few
wrong choices. PC reduces the consequences of incomplete
information due to a more even division of the workload.
However, AF is more aggressive and creates larger differ-
ences in the workload. In QA;i, these imbalances are not
very severe but in the heavy case they overload some nodes
of the system. In the heavy systems, the AF overloads are
not overcomed by the better cache performance, and the
system throughput is smaller. Despite the results for heav-
ier systems, AF is a good choice for practical uses of QA
because most users are not willing to trade several minutes
to get the answers from the system [15] for a small increase
in the precision.

5. RELATED WORK

Many applications related to the access of huge data repos-
itories are distributed and need load balancing algorithms [5].
Most of the research on load balancing for general appli-
cations has been oriented towards algorithms that balance
the load according to a single parameter, which is either
the CPU load [24], the number of jobs in the queue of a
node [13], the disk I/O [7], etc. However, some other works
are closer to our proposals because they combine several of
these variables. For example, Surdeanu et al. [22] combine
the use of CPU and I/O and propose the WAL formula. Qin
et al. [18] add a new parameter to the WAL formula that
takes into account the amount of memory needed to execute
an application. Andresen et al [1] combine the load in each
node with the network cost to forward a task through the
network [1], which is relevant for geographically distributed



systems. But to our knowledge, there is no other work that
in addition to the CPU and I/O load considers the cache
contents in each node and the effects of cooperative caching
in the task execution, as we do. Moreover, we use no cen-
tralized process that can become a bottleneck in the system.

There are some papers that present algorithms with heuris-
tics to benefit the assignation of tasks that are repeated
many times to the same subset of nodes. LARC, developed
by Pai et al. in [17], is an algorithm that selects the servers
according to a locality policy and the CPU load in each
node. However LARC is very different from our proposals:
LARC is not I/O aware, it does not consider the impact of
cooperative caching, and it uses a centralized process to dis-
tribute the tasks. Finally, LARC is not aware if the data is
cached in certain node, it only follows a policy that facili-
tates the caching of a subset of data in a node. A different
proposal that takes into account caching and 1/O, but not
CPU, is WARD by Cherkasova et al. [6]. WARD performs
an offline static analysis of the past logs that assigns to each
server a subset of the data so that the load will be balanced.
However, the analysis is static and the load may differ from
the previous log, whereas our proposals, based on ESC, are
dynamic and are based on current workload.

In the case of distributed architectures for QA, the only
contribution is from Surdeanu et al. [22]. The authors in-
troduced Weighted Average Load (WAL) that takes into ac-
count the CPU usage as well as the I1/O load in the system.
However, WAL does not take into consideration the cache
contents because the original system did not use caching. As
we have seen above, if cache is enabled our algorithms are
faster than WAL for all configurations of our QA system.

6. CONCLUSIONSAND FUTURE WORK

In this paper, we have shown that the overestimation of
the query cost originated by the cache hits can produce
large imbalances in computationally intensive distributed
systems, such as Question Answering.

We propose two algorithms that deal with the imbalance
problem and assign tasks considering several factors: the
cache contents available in the network, its CPU and its
1/0 loads. Probability Cost showed a significant and consis-
tent performance improvement in all our configurations —for
different query sets, number of nodes, cache sizes, query dis-
tributions and QA configurations. These results indicate
that PC is a good load balancing algorithm for any QA dis-
tributed platform. PC performance increases the through-
put of the best published non cache-aware algorithm (WAL)
for QA from 9% up to 38%, which is proof that the cache
contents are relevant for load balancing.

We also introduced the Affinity algorithm, which includes
a preference for local accesses to data and avoids the replica-
ton of non popular documents in the cooperative cache. We
proved that the throughput of the system increases if the
load balancing algorithm considers the cache contents and
imbalances the workload to use the caches more efficiently.
The results for AF are better than PC for lighter systems
where it increases the throughput of WAL by approximately
61%. Although AF works fine only for a limited set of con-
figurations, they are relevant. For example, an interactive
QA system that preprocesses most of the natural language
analysis, falls into the “light” CPU load category where AF
is the best choice. However, the full preprocess of huge, and
probably not static, document collections is not always pos-

sible as it would require prohibitive computing resources.
For such a configuration PC becomes a preferable choice.
Our future work goes towards the design of load balancing
algorithms that capture the system stats during its execu-
tion, and dynamically pick one or the other load balancing
algorithm in accordance to the current system state.
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