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Abstract. This paper analyzes two joint inference approaches for sgéoi@le
labeling: re-ranking of candidate semantic frames geadrhay one local model
and combination of two distinct models at argument-levéhgisneta learning.
We perform an empirical analysis on two recently releasegara of annotated
semantic roles in Spanish and Catalan. This work yieldsraewevel conclu-
sions: (a) the proposed joint inference strategies yielbg®sults even under
adverse conditions: small training corpora, only two iidiial models available
for combination, minimal output available from the indival models; (b) stack-
ing of the two joint inference approaches is successfulchvimdicates that the
two inference models provide complementary benefits. Cauli®are currently
the best for the identification of semantic role for Spanisth @atalan.

1 Introduction

Semantic Role Labeling (SRL) is the task of analyzing clausglicates in open text
by identifying arguments and tagging them with semantieleimdicating the role they
play with respect to the verb, as in:

[Mr. Smith] 4¢en: SENt[the reportbyec: to [Me]recipient [this MOrNinglremporal
Such sentence—level semantic analysis allows to detefmhe’ did “what” to “whom”,
“when” and “where”, and, thus, characterize the partictpamd properties of thevents
established by the predicates. This semantic analysisifotim of event structures is
very interesting for a broad spectrum of NLP applications.

The work proposed in this paper fits in the framework of suise/learning with
jointinference for SRL. We introduce a stacking architegthat exploits several levels
of global learning: in the first level we deploy two base SRLd®is that exploit only
information local to each individual candidate argumemthie second level we perform
re-ranking of the candidate frames generated by the baselsyadd lastly, we combine
the outputs of the two individual models (after re-ranking)ng meta-learning and
sentence-level information.

The combination/joint inference models we introduce arermovel in themselves:
all state-of-the-art SRL systems (see, e.g., [1-4]) inelsdime kind of combination to
increase robustness and to gain coverage and independemcgdrse errors. One may
combine: 1) the output of several independent SRL basiess{2, 5], or 2) several
outputs from the same SRL system obtained by changing inpudtations or other in-
ternal parameters [4, 3]. The combination can be as simpelasting the best among



the set of complete candidate solutions, but usually ctmsfsombining fragments of
alternative solutions to construct the final output. Finathe combination component
may or may not involve machine learning. So far, most of thé 8@rk has been per-
formed on English, but recently, there have been remarladfiés in other languages.
The work by [6] studies semantic role labeling for Chines&ng the Chinese Prop-
Bank and NomBank corpora. Also, SemEval-2007 featured thiesfvaluation exercise
of SRL systems for languages other than English, namelyganSh and Catalan [7].

Nevertheless, our approach has several novel issues.Wwirshow that the global
inference strategies analyzed perform well even undevondidle training conditions:
the training corpora are small and the global models havesado limited information
(only two models available for combination, no output prioiiies provided). We show
that a crucial condition for the success of the joint infeeemodels is the design of a
feature set with low sparsity. We propose such feature setsdth the re-ranking and
combination models and also show that some features pigyiptoposed for English
SRL —i.e., syntactic and lexical features extracted froeltital models— are harmful
in our setup. A second novelty of this work is the stackindd@ecture proposed: to our
knowledge, this is the first work that provides empiricalgdrthat stacking of several
joint inference approaches is a successful strategy for. SRL

The paper is organized as follows. Section 2 overviews tbpgsed strategy. Sec-
tion 3 describes the local SRL models used. Section 4 inteslthe two joint inference
approaches analyzed in this paper. We evaluate the wholérsgestrategy in Section 5.
Section 6 concludes the paper.

2 Approach Overview

The strategy introduced in this paper stacks two joint ierfiee components on top of
two individual SRL models. The intuition behind our approas that we compensate
for the small training corpus by taking advantage of infatioratypically not avail-
able to the independent argument classifiers, i.e., glolaimation available at frame
and sentence level and redundancy between individual model detail the proposed
approach in Figure 1.

The first layer in our system consists of two SRL models, Mddmid Model 2. We
call these modellcal because they classify each argument independently of tiee ot
arguments in the same frame or sentence. Each local moadibiwéd by a re-ranking
component, which re-scores candidate frames —i.e., caenpégjuences of arguments
for one predicate— according to their properties. The n&iry model performgoint
or globalinference because its re-ranking scores depend on joipepties of the set
of arguments in one frame. We currently have implementeddahanking component
for one local model (Model 1). Nevertheless, this is suffiti® prove one of our main
claims, i.e., that stacking global models is a successfatesyy even when only a small
amount of training data is available. The post-procesdiggssimplement various cor-
rections of the local model outputs, e.g., here we impleraesgries of patterns to cap-
ture locative and temporal modifier arguments that are mibgethe local classifiers.
In our architecture, the re-ranking component is placedregbost-processing because
the re-ranking classifier requires the output probabdlienerated by the local models
and these are no longer consistent after the post-progessirections. The proposed
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Fig. 1. Overview of the stacking architecture. The rounded boxdgate joint inference compo-
nents. The interrupted lines indicate components cugrewt implemented.

Model Combination
(argument-level)

system pipeline concludes with another global model, whkimmbines the outputs of
the two branches. The combination model merges all the azgtswgenerated for one
sentence into one pool and re-scores them exploiting thendethcy of the two models
and global information from the corresponding sentence.

3 Local Models

3.1 Model 1

Model 1 is an adaption of a SRL system we developed previdasliEnglish (third
local model in [2]). This SRL approach maps each frame arguin@eone syntactic
constituent and trains one-vs-all AdaBoost [8] classifiefjsintly identify and classify
constituents in the full syntactic tree of the sentence garaents. Similarly to other
state-of-the-art SRL systems, our model extracts feafuoes. (a) the argument con-
stituent, (b) the target predicate, and (c) the relatiowbenh the predicate and argument
syntactic constituents [9-12, 3]. Features range froncédxie.g., head words of the ar-
gument and predicate constituents— to syntactic —e.gstiteant labels and syntactic
path between the predicate and argument constituents.

The model was adapted to the Spanish and Catalan corpormbyireg the features
that were specific either to English or PropBank and addiagrs¢new features:

— We removed th@overning categoryeature [9] because it does not apply to the
Spanish and Catalan corpora: in PropBank, agents are Hypilcaninated by &5
(sentence) phrase, whereas patients are attachél(teerb) phrase. In our corpora
both arguments are dominated by Biphrase that includes the predicate.

— We removedtemporal cue wordgeatures [13] because they were based on an
English-specific dictionary.

— We removed all features based on named-entity informafi6hthecause we did
not have a named-entity recognizer for the target languages

— We implemented head phrase selection heuristics for Spanid Catalan.

— We addedsyntactic functiorfeatures. The syntactic functions available in the data
often point to specific argument labels (e.g., the funcBoki usually indicates an
Ar g0 argument).

— Because the set of part-of-speech (POS) tags and syntabétslin Spanish and
Catalan is much richer than the English Treebank set, weddolaiek-offfeatures,
where the syntactic labels and POS tags are reduced to aesjmpebank-like set.

All the other features are similar to the English SRL systescdibed in [2]. In addition
to feature changes we implemented a novel candidate filfdréuristic to reduce the



model search space: we select as candidates only syntanstitaents that arienme-
diate descendants ddll S phrases that include the corresponding predicate. For both
languages, over 99.6% of the candidates match this conisthai additional filtering
constraint implemented is that the model inspects only icktel labels allowed for the
given predicaté. To enforce the domain constraints, i.e., no overlap allobeveen
arguments of the same predicate and numbered argumfrg® (o Ar g5) can not
repeat for the same predicate, we use a dynamic programitgiogthm similar to the

one proposed by Toutanova et al. [3].

The post-processing process in Model 1 recovers some tetrgouat locative mod-
ifier arguments missed during classification. The need fior tbmponent stemmed
from the observation that in our initial experiments Modgierformed poorly for the
recognition of these two argument types on out-of-domata.deor example, simple
constituents such as prepositional phrases starting Wittptepositiordurante(dur-
ing) were not recognized as temporal arguments even thoughlesamxyisted in the
training data. This happens because Model 1 focuses onmtinelexicalized features
that appear to be more regular in the small training datdadlai To recover from this
problem, we acquired a series of lexicalized patterns thatatassify these modifier
arguments with a precision higher than 60% in the trainirtg 8i@he patterns have the
following forms: (a) head word of candidate constituen{f)tead word of constituent
concatenated with the head word or POS tag of the first nouwasphin the constituent
if the constituent is a prepositional phrase. During pestpssing, these patterns are
used to label constituents with temporal and locative agntriabels only if they were
not classified in any other class by the Model 1 classifiers.

3.2 Model 2

Unlike Model 1, Model 2 was developed from scratch for the target languages. This
model is an enhanced version of an earlier system [14] dpedlfor the SemEval-2007
taskMultilevel Semantic Annotation of Catalan and Spaijissi.

Candidate filtering in Model 2 has two significant differesé®m the strategy used
in Model 1. First, Model 2 inspects only immediate descemslahthemost specifiS
phrase that includes the target predicate. Second, thelrskide constituents with the
syntactic function®\O, ET, MOD, NEG, | MPERS, PASS, andVCOC, as these never carry
a semantic role in the training corpora. During trainings constituents are assigned
an additional semantic labéllONE, which is not reported in the output. The intuition
behind Model 2's candidate filtering heuristic is that, btefiing out constituents more
aggressively than Model 1, this approach may miss some aadjdment constituents
but it generates a cleaner set of candidates with fewer negamples.

For classification, Model 2 uses memory-based learning;ifspaly the 1B1 algo-
rithm as implemented in TiMB®. IB1 is a supervised inductive algorithm for learning

1 A verbal lexicon with this information is distributed withe corpora.

2 This introduces some overfitting because we “know” that Mddeerforms poorly for these
arguments on out-of-domain data. However, the overfittthguinimal because patterns are
learned strictly from the training data. Using the postegessing component is important be-
cause it shows that local models can be successfully iatetewith global models.

Shttp://ilk.uvt.nl/tinbl/



classification tasks based on thaearest neighbor classification rule. The algorithm is
parametrized by using Jeffrey Divergence as the similaniyric, gain ratio for feature
weighting, using 1%-nearest neighbors, and weighting the class vote of neighdm
a function of their inverse linear distance. Similarly to téb 1, Model 2 uses features
extracted from the argument and predicate constituentthamelation between the two
phrases. Additionally, Model 2 extracts a series of featdirem the entire clause that
includes the predicate in focus: total number of prediciétengs with functionCC,; rel-
ative positions of siblings with functior8UJ, CAG, CD, Cl , ATR, CPRED, andCREG

in relation to the verb; boolean feature that indicatesef ttause contains a verbss
and total number of predicate siblings in the clause. Mo&et@mplete feature set is
detailed in [14].

Motivated by the observation that not all features have #mesrelevance, i.e., the
most informative features for SRL in Spanish and Catalanterdeatures that provide
information about the syntactic constituent of the cangidagument [16], Model 2 is
the result of a feature selection process. Feature sefeatis performed by starting
with a set of basic features (the head words with their POS§, iagheir local context)
and gradually adding new features. Every new feature adu#uetbasic system was
evaluated in terms of average accuracy in a 10-fold crokdaten experiment; if it
improved the performance on held-out data, it was addecdetedlection.

Post-processing in Model 2 is a minimal process: it removgsraents tagged with
theNONE label and constructs the required bracketing structurthfooutput. Because
Model 2 extracts its candidate arguments only from siblioigstituents we do not need
to enforce the non-overlapping constraint. Enforcing tba-repetition constraint for
numbered arguments did not improve results, so we did nhtdedt in the final system.

3.3 Differences Between the Two Local Models

While both local models follow the same SRL approach, i.@pping each argument
to one syntactic constituent and learning classifiers tmasslid argument labels to
candidate constituents, there are significant differebeéseen them: (a) The filtering
strategy for candidate arguments is different: Model 2 aseapproach that generates
fewer candidate arguments than Model 1. (b) Model 2 usesharieature set, e.g.,
it has features that exploit syntactic information from thleole clause that includes
the predicate. Model 1 does not exploit clause-level infaion. (c) Model 2 performs
feature selection whereas Model 1 does not. (d) The leampamgdigm is different:
AdaBoost versus memory-based learning. (€) Model 1 useses sd post-processing
patterns to recover some modifier arguments that are natreaptluring classification.
These differences ensure that there is sufficient variaateden the two local models,
a crucial condition for the success of the combination model

4 Global Models

4.1 The Re-ranking Model

We base our re-ranking approach on a variant of the re-rgriR@rceptron of Collins
and Duffy [17]. We modify the original algorithm in two way® thake it more robust to
the small training set available: (a) instead of comparirggdcore of the correct frame



Algorithm 1: Re-ranking Perceptron
w=0
fori=1to ndo
for j =2to n; do
L if w-h(xi;) > w-h(xi1) — 7 then

|_ W — W + h(Xil) — h(Xij)

only with that of the frame predicted by the current model,segquentially compare it
with the score okachcandidate frame, and (b) we learn not only when the predictio
is incorrect but also when the prediction is not confidentugio Both these changes
allow the algorithm to acquire more information about thelgfem to be learned, an
important advantage when the training data is scarce.

The algorithm is listed in Algorithm 1w is the vector of model parametelis,
generates the feature vector for one example xapdenotes thgth candidate for the
ith frame in the training dat;;, which denotes the “correct” candidate for framées
selected in training to maximize the Bcore for each frame. The algorithm sequentially
inspects all candidates for each frame and learns whenffeeatice between the scores
of the correct and the current candidate is less than a thigeshDuring testing we use
the average of all acquired model vectors, weighted by thebmu of iterations they
survived in training. We tuned all system parameters thinocrgss-validation on the
training data. For both languages we set 10 (we do not normalize feature vectors)
and the number of training epochs to 2.

With respect to the features used, we focus only on globalfesa that can be
extracted independently of the local models. We show ini@e& that this approach
performs better on the small corpora available than appemthat include features
from the local models, which are too sparse when the leas@nple is an entire frame.
We group the features into two sets: (a) features that evitriremation from the whole
candidate set, and (b) features that model the structuraobf eandidate frame:

Features from the whole candidate set:

(1) Position of the current candidate in the whole set. Freamelidates consistent with
the domain constraints are generated using a dynamic pnogirsg algorithm [3], and
then sorted in descending order of the log probability ofthele frame (i.e., the sum of
all argument log probabilities as reported by the local ntoéhence, smaller positions
indicate candidates that the local model considers better.

(2) For each argument in the current frame, we store its nambeepetitions in the
whole candidate set. The intuition is that an argument thpears in many candidate
frames is most likely correct.

Features from each candidate frame:

(3) The complete sequence of argument labels, extendedheithredicate lemma and
voice, similar to Toutanova et al. [3].

(4) Maximal overlap with a frame from the verb lexicon. Boltie tSpanish and Catalan
TreeBanks contain a lexicon that lists the accepted segs@i@arguments for the most
common verbs. For each candidate frame, we measure the aleowerlap with the



lexicon frames for the given verb and use the precision]lrecad F;, scores as features.
(5) Average probability (from the local model) of all argumt®in the current frame.
(6) For each argument label that repeats in the current fraraeadd combinations
of the predicate lemma, voice, argument label, and the nuwidabel repetitions as
features. The intuition is that argument repetitions tgflycindicate an error (even if
allowed by the domain constraints).

4.2 The Combination Model

The combination model is an adaptation of a global model vewipusly introduced
for English [2]. The approach starts by merging the soligiganerated by the two lo-
cal models into a unique pool of candidate arguments, whiehteen re-scored using
global information fed to a set of binary discriminativessdiers (one for each argu-
ment label). The classifiers assign to each argument a sagaieuring the confidence
that the argument is part of the correct solution. Finalg te-scored arguments for
one sentence are merged into the best solution —i.e., thenam set with the highest
combined score— that is consistent with the domain coms&a¥Ve implemented the
discriminative classifiers using Support Vector Machfnesnfigured with linear ker-
nels with the default parameters. We implemented the solgeneration stage with a
CKY-based dynamic programming algorithm [18].
We group the features used by the re-scoring classifiergontcsets:

FS1. Voting features— these features quantify the votes received by each argumen
from the two local models. This feature set includes: (a) l&b®l of the candidate
argument; (b) thevumber of systemihat generated an argument with this label and
span; (c) theunique idgModel 1 or Model 2) of the models that generated an argument
with this label and span; and (d) tleegument sequencef the whole frame for the
models that generated this argument candidate.

FS2. Overlap features (same predicate} these features measure the overlap between
different arguments produced by the two models for the sawedigate: (a) theumber
andunique idsof the models that generated an argument with the same spdiffeu

ent label; (b) theaumberandunique idsof the models that generated an argument that
is included, or contains, or overlaps the candidate argtiméacus.

FS3. Overlap features (other predicates)- these features are similar with the previ-
ous group, with the difference that we now compare argungsmerated fodifferent
predicates. The motivation for the overlap features is tlabverlap is allowed be-
tween arguments attached to the same predicate, and ohlgiot or containment is
permitted between arguments assigned to different predica

FS4. Features from the local models- we replicate the features from the local models
that were shown to be the most effective for the SRL problefarimation about the
syntactic phrase and head word of the argument constitat left-most included
noun phrase if the constituent is a prepositional phrasa}lamsyntactic path between
the argument and predicate constituents. The motivatiothise features is to learn
the syntactic and lexical preferences of the individual eted

“http://svmight.joachins.org



5 Experimental Results

For all the experiments, we used the corpora provided by Riet8sk for Catalan (ca)
and Spanish (es) at SemEval-2007 [7]. This is a part of theSSESE corpus consist-
ing of about 100K words per language, annotated with fulsjpay, syntactic functions,
and semantic roles, and also including named entities and senses. The source of
the corpus is varied including articles from news agenciesspapers, and balanced
corpora of the languages involved. These corpora are ggiitiaining (90%) and test
(10%) subsets. Each test set is also divided into two subisetfomain’ (marked with
the .in suffix) and ‘out-of-domain’ (.out) test corpora. Tiirst is intended to be homo-
geneous with respect to the training corpus and the secamdriscted from a part of
the CESS-ECE corpus not involved in the development of theuees.

Although the task at SemEval-2007 was to predict three fapérinformation,
namely, semantic roles, named entities and noun sensesiliegold standard parse
trees, we only address the SRL subtask in this work. It ishwoating that the role set
used contains labels that are composed by a numbered arg(simeifar to PropBank)
plus a verb-independent thematic role label similar to thheeme proposed in VerbNet.

The data for training the global models was generated bypaifg 5-fold cross
validation on the whole training set with the previous madael the pipeline of pro-
cessors (i.e., the individual models after post-procedsilso, parameter tuning was
always performed by cross validation on the training set.

5.1 Overall Results

For the clarity of the exposition we present a top-down asialgf the proposed ap-
proach: we discuss first the results of the overall systentlae we analyze the two
global models in the system pipeline in the next two subisest

We list the results of the complete system in the “Combimétiows in Table 1, for
the four test corpora (Spanish and Catalan, in and out of dgna this table we report
results using the best configurations of the global models {{se next sub-sections for
details). Next to the Fscores we list the corresponding statistical significantarvals
obtained using bootstrap re-sampling [29]he R scores range from 83.56 (ca.out) to
88.88 (ca.in). These results are comparable to the best $érss for English, where
the performance using correct syntactic information apphes 90 F points for in-
domain evaluation. We consider these numbers encouragirgidering that our train-
ing corporais 10 times smaller than the English PropBanknantave to label a larger
number of classes (e.g., there are 33 core arguments foisBpan 6 for English).

5.2 Analysis of the Combination Model

Table 1 details the contribution of the combination model,, ithe right-most box in
Figure 1. We compare the combination model against its tyaits) i.e., Models 1
and 2 after re-ranking and post-processing (position (¢jigure 1), and against two
baselines, one recall-oriented (“Baseline R”) and oneipi@t-oriented (“Baseline P”).

5 F, rates outside of these intervals are assumed to be sigifictifierent from the related £
rate p < 0.05).



ca.in ca.out
P R F P R F1
Combination92.1685.8388.88+1.80(|87.8079.7283.56+2.33
Model 1 (c) |87.8383.6187.22+2.10(|82.8379.2581.00+2.71
Model 2 (c) |87.5986.5287.05+2.17||82.2277.2879.67-2.62
Baseline R |87.6787.2487.45+2.19||82.18§82.2582.21+2.47
Baseline P {94.3080.5286.87+2.03(/92.1169.01/78.90t2.71
es.in es.out
P R F P R F1
Combination89.2281.0984.96+1.80(|89.7583.4486.49+1.79
Model 1 (c) [83.0681.4782.26+1.94||87.6884.4486.03+2.07
Model 2 (c) |83.4282.4782.94+2.10||85.4185.4185.41+1.89
Baseline R |82.8883.3883.13+2.02||84.9285.9985.45+1.78
Baseline P |92.3273.6681.94+2.15||95.3577.8285.70+1.79

Table 1. Overall results for the combination model. The individuaddels are evaluated after
re-ranking and post-processing (where applicable),gasition (c) in Figure 1.

ca.in ca.out es.in es.out
PIR|[R | PIRJR|PIR|R|PJR]|HR
FS192.2484.17188.04(88.5471.8379.32(89.9779.71/84.53|90.6281.8185.99
+ FS292.2285.5788.77(87.7679.4483.39|88.6481.8585.11/|89.5484.9287.17
+ FS392.1685.8388.88(87.8(079.7283.56|89.2281.0984.96|89.7583.4686.49
+ FS492.5884.6188.41|87.9477.0082.12(89.7379.6384.34|89.8481.8185.64

Table 2. Feature analysis for the combination model.

Baseline R mergeall the arguments generated by Models 1 and 2 (c). Baseline &sele
only arguments where the two input models agrzed.

The combination model is better than its two inputs in all $b&ups. The increase
in F; scores ranges from 0.46 points (es.out) to 2.56 pointsytafor in-domain data
(ca.in and es.in), the;Fscore improvement is approximately 2 points, which is smil
to the improvements seen for English, even though here we leas training data and
fewer individual models that provide less information (erg output probabilities are
available). The performance of the combination model isgswbetter than both of the
baselines as well. As expected, the recall-oriented basalthieves the highest recall
and the precision-oriented baseline the highest pregisionthe combination model
obtains the bestFscore. This is an indication that the model is capable ohiear
useful information beyond the simple redundancy used by #selines.

Table 2 analyzes the contribution of the four proposed featgroups. The analysis
is cumulative, i.e., the “+ FS2” row lists the performancetloé system configured
with the first two feature groups. The table indicates thatinsetup the features from
the local models (FS4) do not help. This is a significant dffee from English SRL,
where lexical and syntactic features extracted from thallowdels are known to help
global strategies [2, 3]. Our conjecture is that in our sehgcombination model can
not recover from the increased sparsity introduced by tatufes that model syntactic
context and lexical information. Note that the sparsityhefge features is much larger

8 Conflicts with the domain constraints are solved using theesstrategy as [2].



ca.in ca.out es.in es.out
P R F P R F P R F1 P R F
Model 1 (a)85.4884.4384.95|80.7368.45374.09|78.7377.1177.91(84.7373.9378.96
This paper|87.8386.6187.22|82.1769.67175.4183.06§81.4782.26|86.6376.2681.12
Collins 87.9486.7087.30(81.1968.9474.56|82.67181.0981.87(85.6275.8880.45
Toutanova |79.4078.4378.92|73.0062.4467.31/{79.3276.9578.14(82.5475.2978.74

Table 3. Analysis of the re-ranking model.

in the combination model than the local models becauseslahel we work only with
the final output of the local models, whereas the individuatlels have a much larger
space of candidate arguments. A somewhat similar observetin be made for FS3.
But because we performed the tuning of the combination modetaining data and
there we saw a small improvement when using this featureggreudecided to include
this set of features in the best model configuration.

5.3 Analysis of Re-ranking

We analyze the proposed re-ranking model in Table 3. We coartha re-ranking per-
formance against the corresponding local model (Model La@dl against two varia-
tions of our approach: in the first we used our best featureigdhe original re-ranking
Perceptron of Collins and Duffy [17], and in the second wedusear re-ranking algo-
rithm but we configured it with the features proposed by Toata et al. [3]. This
feature set includes features (3) and (6) from Section 4dla#ideatures from the local
model concatenated with the label of the correspondingidatelargument.

We draw several observations from this analysis: (a) ouanéing model always
outperforms the local model, with;Score improvements ranging from 1.32 to 4.35
points; (b) the re-ranking Perceptron proposed here paddretter than the algorithm
of Collins and Duffy on three out of four corpora, and (c) teatlire set proposed here
achieve significant better performance on the SemEval catpan the set proposed by
Toutanova et al., which never improves over the local mobletse observations indi-
cate that, while our modifications to the re-ranking Penmmapyield a minor improve-
ment, the biggest contribution comes from the novel setatiies proposed. Whereas
the model configured with the Toutanova et al. feature sdbpas modestly because
the features from the local models are too sparse in thisagjkddup, we replicate the
behavior of the local model just with feature (1), and all ttker five global features
proposed have a positive contribution. This conclusiomedates well with the analysis
in the previous sub-section, where we also observed thtasymand lexical features
from the local model do not help in another global setup wittal training corpora.

5.4 Putting It All Together: Analysis of Stacking

Table 4 summarizes the paper’'s main results. We show thésedevery point in the
pipeline for Model 1: after the local model, after re-rankiafter post-processing, and
after the combination with Model 2. Note that we apply thetgo®cessing patterns
only on out-of-domain data because this is where we obséhatthe local model fails
to recognize locative and temporal modifier arguments. ahketre-enforces our claim
that the stacking of global strategies is a successful wayitigate the lack of training
data, even (or more so) when the global models are interdeaith local strategies.



ca.in ca.out
P R F1 P R F1
Model 1 (a)85.4884.4384.95+2.27|(80.7368.4974.09+3.18
+ re-ranking87.8386.6187.22+2.00|(82.1769.6775.41+2.95
+ post-processing — - - 82.8379.2581.00t3.16
+ combination92.1685.8388.88+1.80|(87.8(079.7283.56+2.33
es.in es.out
P R F1 P R F1
Model 1 (a)78.7377.1177.9%4-2.27(|84.7373.9378.96+2.50
+ re-ranking83.0681.47182.26+2.04(|86.6376.2681.12+2.21
+ post-processing — - - 87.6884.4486.03t2.23
+ combination89.2281.0984.96x1.80||89.7583.4686.49:1.79

Table 4. Stacking results relative to Model 1.

On in-domain corpora (ca.in and es.in) we improve the peréarce of the local model
with 3.93 and 7.05 Fpoints. On out-of-domain corpora (ca.out and es.out), e/ker
applied the post-processing patterns, we increased,tBedfe of the local model with
9.47 and 7.53 points.

Another important observation is that the two global apphes can be stacked
because they provide complementary benefits. Becausakatgas configured to op-
timize F, it tends to improve recall, which is generally lower in thedbmodel due
to the insufficient coverage of the training data. On the oti@nd, the combination
model tends to improve precision because a good part ofatsileg is driven by the
redundancy between the two models, which is a precisicented feature.

6 Conclusions

In this paper we propose a SRL approach that stacks two mmigt¢bal) inference com-
ponents on top of two individual (or local) SRL models. Thstfglobal model re-ranks
entire candidate frames produced by the local models. Tdensoint inference model
combines the outputs of the two local models after re-ragkising meta-learning and
sentence-level information.

We draw several novel conclusions from this work. First, hevethat global strate-
gies work well under unfavorable training conditions, eagir training corpora are 10
times smaller than the English PropBank, there are only bwallmodels available for
combination, and these models provide limited informafiom output probabilities).
We show that a key requirement for success in these conslitito focus on global
mostly-unlexicalized features that have low sparsity éaesmall training corpora. We
propose such feature sets both for the re-ranking and théioation models. We also
show that lexical and syntactic features from the local ngaehich tend to have high
sparsity, do not help in our setup. A second novelty of ouvimthat we show that the
proposed global strategies can be successfully stackexlbedthey provide comple-
mentary benefits: in our configuration re-ranking tends tprimme recall whereas the
combination model boosts precision.

Our complete SRL system obtains the current best resul§ganish and Catalan:
for in-domain data and correct syntactic information, ogstem obtains Fscores of
88.88 points for Catalan and 84.96 for Spanish. For outesfiain data and gold syntax,
our systems obtains 83.56 points for Catalan and 86.49 faniSh.
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