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Abstract. This paper analyzes two joint inference approaches for semantic role
labeling: re-ranking of candidate semantic frames generated by one local model
and combination of two distinct models at argument-level using meta learning.
We perform an empirical analysis on two recently released corpora of annotated
semantic roles in Spanish and Catalan. This work yields several novel conclu-
sions: (a) the proposed joint inference strategies yield good results even under
adverse conditions: small training corpora, only two individual models available
for combination, minimal output available from the individual models; (b) stack-
ing of the two joint inference approaches is successful, which indicates that the
two inference models provide complementary benefits. Our results are currently
the best for the identification of semantic role for Spanish and Catalan.

1 Introduction

Semantic Role Labeling (SRL) is the task of analyzing clausepredicates in open text
by identifying arguments and tagging them with semantic labels indicating the role they
play with respect to the verb, as in:

[Mr. Smith]Agent sent[the report]Object to [me]Recipient [this morning]Temporal

Such sentence–level semantic analysis allows to determine“who” did “what” to “whom”,
“when” and “where”, and, thus, characterize the participants and properties of theevents
established by the predicates. This semantic analysis in the form of event structures is
very interesting for a broad spectrum of NLP applications.

The work proposed in this paper fits in the framework of supervised learning with
joint inference for SRL. We introduce a stacking architecture that exploits several levels
of global learning: in the first level we deploy two base SRL models that exploit only
information local to each individual candidate argument; in the second level we perform
re-ranking of the candidate frames generated by the base models; and lastly, we combine
the outputs of the two individual models (after re-ranking)using meta-learning and
sentence-level information.

The combination/joint inference models we introduce are not novel in themselves:
all state-of-the-art SRL systems (see, e.g., [1–4]) include some kind of combination to
increase robustness and to gain coverage and independence from parse errors. One may
combine: 1) the output of several independent SRL basic systems [2, 5], or 2) several
outputs from the same SRL system obtained by changing input annotations or other in-
ternal parameters [4, 3]. The combination can be as simple asselecting the best among



the set of complete candidate solutions, but usually consists of combining fragments of
alternative solutions to construct the final output. Finally, the combination component
may or may not involve machine learning. So far, most of the SRL work has been per-
formed on English, but recently, there have been remarkableefforts in other languages.
The work by [6] studies semantic role labeling for Chinese, using the Chinese Prop-
Bank and NomBank corpora. Also, SemEval-2007 featured the first evaluation exercise
of SRL systems for languages other than English, namely for Spanish and Catalan [7].

Nevertheless, our approach has several novel issues. First, we show that the global
inference strategies analyzed perform well even under unfavorable training conditions:
the training corpora are small and the global models have access to limited information
(only two models available for combination, no output probabilities provided). We show
that a crucial condition for the success of the joint inference models is the design of a
feature set with low sparsity. We propose such feature sets for both the re-ranking and
combination models and also show that some features previously proposed for English
SRL –i.e., syntactic and lexical features extracted from the local models– are harmful
in our setup. A second novelty of this work is the stacking architecture proposed: to our
knowledge, this is the first work that provides empirical proof that stacking of several
joint inference approaches is a successful strategy for SRL.

The paper is organized as follows. Section 2 overviews the proposed strategy. Sec-
tion 3 describes the local SRL models used. Section 4 introduces the two joint inference
approaches analyzed in this paper. We evaluate the whole stacking strategy in Section 5.
Section 6 concludes the paper.

2 Approach Overview

The strategy introduced in this paper stacks two joint inference components on top of
two individual SRL models. The intuition behind our approach is that we compensate
for the small training corpus by taking advantage of information typically not avail-
able to the independent argument classifiers, i.e., global information available at frame
and sentence level and redundancy between individual models. We detail the proposed
approach in Figure 1.

The first layer in our system consists of two SRL models, Model1 and Model 2. We
call these modelslocal because they classify each argument independently of the other
arguments in the same frame or sentence. Each local model is followed by a re-ranking
component, which re-scores candidate frames –i.e., complete sequences of arguments
for one predicate– according to their properties. The re-ranking model performsjoint
or global inference because its re-ranking scores depend on joint properties of the set
of arguments in one frame. We currently have implemented there-ranking component
for one local model (Model 1). Nevertheless, this is sufficient to prove one of our main
claims, i.e., that stacking global models is a successful strategy even when only a small
amount of training data is available. The post-processing steps implement various cor-
rections of the local model outputs, e.g., here we implementa series of patterns to cap-
ture locative and temporal modifier arguments that are missed by the local classifiers.
In our architecture, the re-ranking component is placed before post-processing because
the re-ranking classifier requires the output probabilities generated by the local models
and these are no longer consistent after the post-processing corrections. The proposed
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Fig. 1.Overview of the stacking architecture. The rounded boxes indicate joint inference compo-
nents. The interrupted lines indicate components currently not implemented.

system pipeline concludes with another global model, whichcombines the outputs of
the two branches. The combination model merges all the arguments generated for one
sentence into one pool and re-scores them exploiting the redundancy of the two models
and global information from the corresponding sentence.

3 Local Models

3.1 Model 1

Model 1 is an adaption of a SRL system we developed previouslyfor English (third
local model in [2]). This SRL approach maps each frame argument to one syntactic
constituent and trains one-vs-all AdaBoost [8] classifiersto jointly identify and classify
constituents in the full syntactic tree of the sentence as arguments. Similarly to other
state-of-the-art SRL systems, our model extracts featuresfrom: (a) the argument con-
stituent, (b) the target predicate, and (c) the relation between the predicate and argument
syntactic constituents [9–12,3]. Features range from lexical –e.g., head words of the ar-
gument and predicate constituents– to syntactic –e.g., constituent labels and syntactic
path between the predicate and argument constituents.

The model was adapted to the Spanish and Catalan corpora by removing the features
that were specific either to English or PropBank and adding several new features:

– We removed thegoverning categoryfeature [9] because it does not apply to the
Spanish and Catalan corpora: in PropBank, agents are typically dominated by aS
(sentence) phrase, whereas patients are attached toVP (verb) phrase. In our corpora
both arguments are dominated by theS phrase that includes the predicate.

– We removedtemporal cue wordsfeatures [13] because they were based on an
English-specific dictionary.

– We removed all features based on named-entity information [10] because we did
not have a named-entity recognizer for the target languages.

– We implemented head phrase selection heuristics for Spanish and Catalan.
– We addedsyntactic functionfeatures. The syntactic functions available in the data

often point to specific argument labels (e.g., the functionSUJ usually indicates an
Arg0 argument).

– Because the set of part-of-speech (POS) tags and syntactic labels in Spanish and
Catalan is much richer than the English Treebank set, we added back-offfeatures,
where the syntactic labels and POS tags are reduced to a simpler, Treebank-like set.

All the other features are similar to the English SRL system described in [2]. In addition
to feature changes we implemented a novel candidate filtering heuristic to reduce the



model search space: we select as candidates only syntactic constituents that areimme-
diate descendants ofall S phrases that include the corresponding predicate. For both
languages, over 99.6% of the candidates match this constraint. An additional filtering
constraint implemented is that the model inspects only candidate labels allowed for the
given predicate.1 To enforce the domain constraints, i.e., no overlap allowedbetween
arguments of the same predicate and numbered arguments (Arg0 to Arg5) can not
repeat for the same predicate, we use a dynamic programming algorithm similar to the
one proposed by Toutanova et al. [3].

The post-processing process in Model 1 recovers some temporal and locative mod-
ifier arguments missed during classification. The need for this component stemmed
from the observation that in our initial experiments Model 1performed poorly for the
recognition of these two argument types on out-of-domain data. For example, simple
constituents such as prepositional phrases starting with the prepositiondurante(dur-
ing) were not recognized as temporal arguments even though samples existed in the
training data. This happens because Model 1 focuses on othernon-lexicalized features
that appear to be more regular in the small training data available. To recover from this
problem, we acquired a series of lexicalized patterns that can classify these modifier
arguments with a precision higher than 60% in the training data.2 The patterns have the
following forms: (a) head word of candidate constituent, or(b) head word of constituent
concatenated with the head word or POS tag of the first noun phrase in the constituent
if the constituent is a prepositional phrase. During post-processing, these patterns are
used to label constituents with temporal and locative argument labels only if they were
not classified in any other class by the Model 1 classifiers.

3.2 Model 2

Unlike Model 1, Model 2 was developed from scratch for the twotarget languages. This
model is an enhanced version of an earlier system [14] developed for the SemEval–2007
taskMultilevel Semantic Annotation of Catalan and Spanish[15].

Candidate filtering in Model 2 has two significant differences from the strategy used
in Model 1. First, Model 2 inspects only immediate descendants of themost specificS
phrase that includes the target predicate. Second, the model skips constituents with the
syntactic functionsAO, ET, MOD, NEG, IMPERS, PASS, andVOC, as these never carry
a semantic role in the training corpora. During training, these constituents are assigned
an additional semantic label,NONE, which is not reported in the output. The intuition
behind Model 2’s candidate filtering heuristic is that, by filtering out constituents more
aggressively than Model 1, this approach may miss some validargument constituents
but it generates a cleaner set of candidates with fewer negative samples.

For classification, Model 2 uses memory-based learning, specifically the IB1 algo-
rithm as implemented in TiMBL3. IB1 is a supervised inductive algorithm for learning

1 A verbal lexicon with this information is distributed with the corpora.
2 This introduces some overfitting because we “know” that Model 1 performs poorly for these

arguments on out-of-domain data. However, the overfitting is minimal because patterns are
learned strictly from the training data. Using the post-processing component is important be-
cause it shows that local models can be successfully interleaved with global models.

3 http://ilk.uvt.nl/timbl/



classification tasks based on thek-nearest neighbor classification rule. The algorithm is
parametrized by using Jeffrey Divergence as the similaritymetric, gain ratio for feature
weighting, using 11k-nearest neighbors, and weighting the class vote of neighbors as
a function of their inverse linear distance. Similarly to Model 1, Model 2 uses features
extracted from the argument and predicate constituents andthe relation between the two
phrases. Additionally, Model 2 extracts a series of features from the entire clause that
includes the predicate in focus: total number of predicate siblings with functionCC; rel-
ative positions of siblings with functionsSUJ, CAG, CD, CI, ATR, CPRED, andCREG
in relation to the verb; boolean feature that indicates if the clause contains a verbalse;
and total number of predicate siblings in the clause. Model 2’s complete feature set is
detailed in [14].

Motivated by the observation that not all features have the same relevance, i.e., the
most informative features for SRL in Spanish and Catalan arethe features that provide
information about the syntactic constituent of the candidate argument [16], Model 2 is
the result of a feature selection process. Feature selection was performed by starting
with a set of basic features (the head words with their POS tags, in their local context)
and gradually adding new features. Every new feature added to the basic system was
evaluated in terms of average accuracy in a 10-fold cross-validation experiment; if it
improved the performance on held-out data, it was added to the selection.

Post-processing in Model 2 is a minimal process: it removes arguments tagged with
theNONE label and constructs the required bracketing structure forthe output. Because
Model 2 extracts its candidate arguments only from sibling constituents we do not need
to enforce the non-overlapping constraint. Enforcing the non-repetition constraint for
numbered arguments did not improve results, so we did not include it in the final system.

3.3 Differences Between the Two Local Models

While both local models follow the same SRL approach, i.e., mapping each argument
to one syntactic constituent and learning classifiers to assign valid argument labels to
candidate constituents, there are significant differencesbetween them: (a) The filtering
strategy for candidate arguments is different: Model 2 usesan approach that generates
fewer candidate arguments than Model 1. (b) Model 2 uses a richer feature set, e.g.,
it has features that exploit syntactic information from thewhole clause that includes
the predicate. Model 1 does not exploit clause-level information. (c) Model 2 performs
feature selection whereas Model 1 does not. (d) The learningparadigm is different:
AdaBoost versus memory-based learning. (e) Model 1 uses a series of post-processing
patterns to recover some modifier arguments that are not captured during classification.
These differences ensure that there is sufficient variance between the two local models,
a crucial condition for the success of the combination model.

4 Global Models

4.1 The Re-ranking Model

We base our re-ranking approach on a variant of the re-ranking Perceptron of Collins
and Duffy [17]. We modify the original algorithm in two ways to make it more robust to
the small training set available: (a) instead of comparing the score of the correct frame



Algorithm 1 : Re-ranking Perceptron
w = 0

for i = 1 to n do
for j = 2 to ni do

if w · h(xij) > w · h(xi1)− τ then
w ← w + h(xi1)− h(xij)

only with that of the frame predicted by the current model, wesequentially compare it
with the score ofeachcandidate frame, and (b) we learn not only when the prediction
is incorrect but also when the prediction is not confident enough. Both these changes
allow the algorithm to acquire more information about the problem to be learned, an
important advantage when the training data is scarce.

The algorithm is listed in Algorithm 1:w is the vector of model parameters,h

generates the feature vector for one example, andxij denotes thejth candidate for the
ith frame in the training data.xi1, which denotes the “correct” candidate for framei, is
selected in training to maximize the F1 score for each frame. The algorithm sequentially
inspects all candidates for each frame and learns when the difference between the scores
of the correct and the current candidate is less than a threshold τ . During testing we use
the average of all acquired model vectors, weighted by the number of iterations they
survived in training. We tuned all system parameters through cross-validation on the
training data. For both languages we setτ = 10 (we do not normalize feature vectors)
and the number of training epochs to 2.

With respect to the features used, we focus only on global features that can be
extracted independently of the local models. We show in Section 5 that this approach
performs better on the small corpora available than approaches that include features
from the local models, which are too sparse when the learningsample is an entire frame.
We group the features into two sets: (a) features that extract information from the whole
candidate set, and (b) features that model the structure of each candidate frame:

Features from the whole candidate set:
(1) Position of the current candidate in the whole set. Framecandidates consistent with
the domain constraints are generated using a dynamic programming algorithm [3], and
then sorted in descending order of the log probability of thewhole frame (i.e., the sum of
all argument log probabilities as reported by the local model). Hence, smaller positions
indicate candidates that the local model considers better.
(2) For each argument in the current frame, we store its number of repetitions in the
whole candidate set. The intuition is that an argument that appears in many candidate
frames is most likely correct.

Features from each candidate frame:
(3) The complete sequence of argument labels, extended withthe predicate lemma and
voice, similar to Toutanova et al. [3].
(4) Maximal overlap with a frame from the verb lexicon. Both the Spanish and Catalan
TreeBanks contain a lexicon that lists the accepted sequences of arguments for the most
common verbs. For each candidate frame, we measure the maximal overlap with the



lexicon frames for the given verb and use the precision, recall, and F1 scores as features.
(5) Average probability (from the local model) of all arguments in the current frame.
(6) For each argument label that repeats in the current frame, we add combinations
of the predicate lemma, voice, argument label, and the number of label repetitions as
features. The intuition is that argument repetitions typically indicate an error (even if
allowed by the domain constraints).

4.2 The Combination Model

The combination model is an adaptation of a global model we previously introduced
for English [2]. The approach starts by merging the solutions generated by the two lo-
cal models into a unique pool of candidate arguments, which are then re-scored using
global information fed to a set of binary discriminative classifiers (one for each argu-
ment label). The classifiers assign to each argument a score measuring the confidence
that the argument is part of the correct solution. Finally, the re-scored arguments for
one sentence are merged into the best solution –i.e., the argument set with the highest
combined score– that is consistent with the domain constraints. We implemented the
discriminative classifiers using Support Vector Machines4 configured with linear ker-
nels with the default parameters. We implemented the solution generation stage with a
CKY-based dynamic programming algorithm [18].

We group the features used by the re-scoring classifiers intofour sets:

FS1. Voting features– these features quantify the votes received by each argument
from the two local models. This feature set includes: (a) thelabel of the candidate
argument; (b) thenumber of systemsthat generated an argument with this label and
span; (c) theunique ids(Model 1 or Model 2) of the models that generated an argument
with this label and span; and (d) theargument sequenceof the whole frame for the
models that generated this argument candidate.

FS2. Overlap features (same predicate)– these features measure the overlap between
different arguments produced by the two models for the same predicate: (a) thenumber
andunique idsof the models that generated an argument with the same span but differ-
ent label; (b) thenumberandunique idsof the models that generated an argument that
is included, or contains, or overlaps the candidate argument in focus.

FS3. Overlap features (other predicates)– these features are similar with the previ-
ous group, with the difference that we now compare argumentsgenerated fordifferent
predicates. The motivation for the overlap features is thatno overlap is allowed be-
tween arguments attached to the same predicate, and only inclusion or containment is
permitted between arguments assigned to different predicates.

FS4. Features from the local models– we replicate the features from the local models
that were shown to be the most effective for the SRL problem: information about the
syntactic phrase and head word of the argument constituent (and left-most included
noun phrase if the constituent is a prepositional phrase) and the syntactic path between
the argument and predicate constituents. The motivation for these features is to learn
the syntactic and lexical preferences of the individual models.

4 http://svmlight.joachims.org



5 Experimental Results

For all the experiments, we used the corpora provided by the SRL task for Catalan (ca)
and Spanish (es) at SemEval-2007 [7]. This is a part of the CESS-ECE corpus consist-
ing of about 100K words per language, annotated with full parsing, syntactic functions,
and semantic roles, and also including named entities and noun senses. The source of
the corpus is varied including articles from news agencies,newspapers, and balanced
corpora of the languages involved. These corpora are split into training (90%) and test
(10%) subsets. Each test set is also divided into two subsets: ‘in-domain’ (marked with
the .in suffix) and ‘out-of-domain’ (.out) test corpora. Thefirst is intended to be homo-
geneous with respect to the training corpus and the second isextracted from a part of
the CESS-ECE corpus not involved in the development of the resources.

Although the task at SemEval-2007 was to predict three layers of information,
namely, semantic roles, named entities and noun senses, from the gold standard parse
trees, we only address the SRL subtask in this work. It is worth noting that the role set
used contains labels that are composed by a numbered argument (similar to PropBank)
plus a verb-independent thematic role label similar to the scheme proposed in VerbNet.

The data for training the global models was generated by performing 5-fold cross
validation on the whole training set with the previous models in the pipeline of pro-
cessors (i.e., the individual models after post-processing). Also, parameter tuning was
always performed by cross validation on the training set.

5.1 Overall Results

For the clarity of the exposition we present a top-down analysis of the proposed ap-
proach: we discuss first the results of the overall system andthen we analyze the two
global models in the system pipeline in the next two sub-sections.

We list the results of the complete system in the “Combination” rows in Table 1, for
the four test corpora (Spanish and Catalan, in and out of domain). In this table we report
results using the best configurations of the global models (see the next sub-sections for
details). Next to the F1 scores we list the corresponding statistical significance intervals
obtained using bootstrap re-sampling [19].5 The F1 scores range from 83.56 (ca.out) to
88.88 (ca.in). These results are comparable to the best SRL systems for English, where
the performance using correct syntactic information approaches 90 F1 points for in-
domain evaluation. We consider these numbers encouraging considering that our train-
ing corpora is 10 times smaller than the English PropBank andwe have to label a larger
number of classes (e.g., there are 33 core arguments for Spanish vs. 6 for English).

5.2 Analysis of the Combination Model

Table 1 details the contribution of the combination model, i.e., the right-most box in
Figure 1. We compare the combination model against its two inputs, i.e., Models 1
and 2 after re-ranking and post-processing (position (c) inFigure 1), and against two
baselines, one recall-oriented (“Baseline R”) and one precision-oriented (“Baseline P”).

5 F1 rates outside of these intervals are assumed to be significantly different from the related F1
rate (p < 0.05).



ca.in ca.out
P R F1 P R F1

Combination92.1685.8388.88±1.80 87.8079.7283.56±2.33

Model 1 (c) 87.8383.6187.22±2.10 82.8379.2581.00±2.71

Model 2 (c) 87.5986.5287.05±2.17 82.2277.2879.67±2.62

Baseline R 87.6787.2287.45±2.19 82.1882.2582.21±2.47

Baseline P 94.3080.5286.87±2.03 92.1169.0178.90±2.71

es.in es.out
P R F1 P R F1

Combination89.2281.0984.96±1.80 89.7583.4686.49±1.79

Model 1 (c) 83.0681.4782.26±1.94 87.6884.4486.03±2.07

Model 2 (c) 83.4282.4782.94±2.10 85.4185.4185.41±1.89

Baseline R 82.8883.3883.13±2.02 84.9285.9985.45±1.78

Baseline P 92.3273.6681.94±2.15 95.3577.8285.70±1.79

Table 1. Overall results for the combination model. The individual models are evaluated after
re-ranking and post-processing (where applicable), i.e.,position (c) in Figure 1.

ca.in ca.out es.in es.out
P R F1 P R F1 P R F1 P R F1

FS192.2884.1788.04 88.5471.8379.32 89.9779.7184.53 90.6281.8185.99
+ FS292.2285.5788.77 87.7679.4483.39 88.6481.8585.11 89.5484.9287.17
+ FS392.1685.8388.88 87.8079.7283.56 89.2281.0984.96 89.7583.4686.49
+ FS492.5884.6188.41 87.9877.0082.12 89.7379.6384.38 89.8581.8185.64

Table 2.Feature analysis for the combination model.

Baseline R mergesall the arguments generated by Models 1 and 2 (c). Baseline P selects
only arguments where the two input models agreed.6

The combination model is better than its two inputs in all thesetups. The increase
in F1 scores ranges from 0.46 points (es.out) to 2.56 points (ca.out). For in-domain data
(ca.in and es.in), the F1 score improvement is approximately 2 points, which is similar
to the improvements seen for English, even though here we have less training data and
fewer individual models that provide less information (e.g., no output probabilities are
available). The performance of the combination model is always better than both of the
baselines as well. As expected, the recall-oriented baseline achieves the highest recall
and the precision-oriented baseline the highest precision, but the combination model
obtains the best F1 score. This is an indication that the model is capable of learning
useful information beyond the simple redundancy used by thebaselines.

Table 2 analyzes the contribution of the four proposed features groups. The analysis
is cumulative, i.e., the “+ FS2” row lists the performance ofthe system configured
with the first two feature groups. The table indicates that inour setup the features from
the local models (FS4) do not help. This is a significant difference from English SRL,
where lexical and syntactic features extracted from the local models are known to help
global strategies [2, 3]. Our conjecture is that in our setupthe combination model can
not recover from the increased sparsity introduced by the features that model syntactic
context and lexical information. Note that the sparsity of these features is much larger

6 Conflicts with the domain constraints are solved using the same strategy as [2].



ca.in ca.out es.in es.out
P R F1 P R F1 P R F1 P R F1

Model 1 (a)85.4884.4384.95 80.7368.4574.09 78.7377.1177.91 84.7373.9378.96
This paper 87.8386.6187.22 82.1769.6775.41 83.0681.4782.26 86.6376.2681.12
Collins 87.9286.7087.30 81.1968.9274.56 82.6781.0981.87 85.6275.8880.45
Toutanova 79.4078.4378.92 73.0062.4467.31 79.3276.9578.12 82.5275.2978.74

Table 3.Analysis of the re-ranking model.

in the combination model than the local models because at this level we work only with
the final output of the local models, whereas the individual models have a much larger
space of candidate arguments. A somewhat similar observation can be made for FS3.
But because we performed the tuning of the combination modelon training data and
there we saw a small improvement when using this feature group we decided to include
this set of features in the best model configuration.

5.3 Analysis of Re-ranking
We analyze the proposed re-ranking model in Table 3. We compare the re-ranking per-
formance against the corresponding local model (Model 1 (a)) and against two varia-
tions of our approach: in the first we used our best feature setbut the original re-ranking
Perceptron of Collins and Duffy [17], and in the second we used our re-ranking algo-
rithm but we configured it with the features proposed by Toutanova et al. [3]. This
feature set includes features (3) and (6) from Section 4.1 and all features from the local
model concatenated with the label of the corresponding candidate argument.

We draw several observations from this analysis: (a) our re-ranking model always
outperforms the local model, with F1 score improvements ranging from 1.32 to 4.35
points; (b) the re-ranking Perceptron proposed here performs better than the algorithm
of Collins and Duffy on three out of four corpora, and (c) the feature set proposed here
achieve significant better performance on the SemEval corpora than the set proposed by
Toutanova et al., which never improves over the local model.These observations indi-
cate that, while our modifications to the re-ranking Perceptron yield a minor improve-
ment, the biggest contribution comes from the novel set of features proposed. Whereas
the model configured with the Toutanova et al. feature set performs modestly because
the features from the local models are too sparse in this global setup, we replicate the
behavior of the local model just with feature (1), and all theother five global features
proposed have a positive contribution. This conclusion correlates well with the analysis
in the previous sub-section, where we also observed that syntactic and lexical features
from the local model do not help in another global setup with small training corpora.

5.4 Putting It All Together: Analysis of Stacking
Table 4 summarizes the paper’s main results. We show the results at every point in the
pipeline for Model 1: after the local model, after re-ranking, after post-processing, and
after the combination with Model 2. Note that we apply the post-processing patterns
only on out-of-domain data because this is where we observedthat the local model fails
to recognize locative and temporal modifier arguments. The table re-enforces our claim
that the stacking of global strategies is a successful way tomitigate the lack of training
data, even (or more so) when the global models are interleaved with local strategies.



ca.in ca.out
P R F1 P R F1

Model 1 (a)85.4884.4384.95±2.27 80.7368.4574.09±3.18

+ re-ranking87.8386.6187.22±2.00 82.1769.6775.41±2.95

+ post-processing – – – 82.8379.2581.00±3.16

+ combination92.1685.8388.88±1.80 87.8079.7283.56±2.33

es.in es.out
P R F1 P R F1

Model 1 (a)78.7377.1177.91±2.27 84.7373.9378.96±2.50

+ re-ranking83.0681.4782.26±2.04 86.6376.2681.12±2.21

+ post-processing – – – 87.6884.4486.03±2.23

+ combination89.2281.0984.96±1.80 89.7583.4686.49±1.79

Table 4.Stacking results relative to Model 1.

On in-domain corpora (ca.in and es.in) we improve the performance of the local model
with 3.93 and 7.05 F1 points. On out-of-domain corpora (ca.out and es.out), where we
applied the post-processing patterns, we increased the F1 score of the local model with
9.47 and 7.53 points.

Another important observation is that the two global approaches can be stacked
because they provide complementary benefits. Because re-ranking is configured to op-
timize F1 it tends to improve recall, which is generally lower in the local model due
to the insufficient coverage of the training data. On the other hand, the combination
model tends to improve precision because a good part of its learning is driven by the
redundancy between the two models, which is a precision-oriented feature.

6 Conclusions
In this paper we propose a SRL approach that stacks two joint (or global) inference com-
ponents on top of two individual (or local) SRL models. The first global model re-ranks
entire candidate frames produced by the local models. The second joint inference model
combines the outputs of the two local models after re-ranking using meta-learning and
sentence-level information.

We draw several novel conclusions from this work. First, we show that global strate-
gies work well under unfavorable training conditions, e.g., our training corpora are 10
times smaller than the English PropBank, there are only two local models available for
combination, and these models provide limited information(no output probabilities).
We show that a key requirement for success in these conditions is to focus on global
mostly-unlexicalized features that have low sparsity evenin small training corpora. We
propose such feature sets both for the re-ranking and the combination models. We also
show that lexical and syntactic features from the local models, which tend to have high
sparsity, do not help in our setup. A second novelty of our work is that we show that the
proposed global strategies can be successfully stacked because they provide comple-
mentary benefits: in our configuration re-ranking tends to improve recall whereas the
combination model boosts precision.

Our complete SRL system obtains the current best results forSpanish and Catalan:
for in-domain data and correct syntactic information, our system obtains F1 scores of
88.88 points for Catalan and 84.96 for Spanish. For out-of-domain data and gold syntax,
our systems obtains 83.56 points for Catalan and 86.49 for Spanish.
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