The UPC System for Arabic-to-English Entity Translation

D. Farwell, J. Gimenez, E. Gonzalez, R. Halkoum, H. Rodriguez, M. Surdeanu

Technical University of Catalonia {farwell, jgimenez, egonzalez, halkoum, horacio, surdeanu}@lsi.upc.edu

March 30, 2007

Architecture

Named Entity Recognition and Classification

Coreference Resolution

Machine Translation

Resources

Evaluation

System Architecture

Entity Translation (ET) \equiv disambiguation problem solved through statistical Machine Translation (MT).

Execution flow:

- 1. Preprocessing at shallow syntax level.
- Entity mentions recognized in source Arabic text.
- 3. Coreference chains extracted in source text.
- Whole source text translated to English using a statistical phrase-based MT system.
- 5. Phrases corresponding to entity mentions identified in translation.
- Mentions merged into entities based on the coreference chains of source text.

Exceptions

- Untranslated entities: translation fails (unknown words, unknown context). Solution:
 - 1. Lookup in the Translation Repository, which contains all entities previously translated.
 - 2. If no candidate found, inspect the bilingual gazetteer.
 - 3. If no translation found, output the incomplete translation from the MT system.
- Phrase boundaries: because our MT is phrase-based it may happen that an entity mention does not match exactly with a phrase. Solution: output the translation for the text that contains the source entity mention.

Architecture

Named Entity Recognition and Classification

Coreference Resolution

Machine Translation

Resources

Evaluation

Approach: Sequential BIO Tagger

```
Input: A training sample \mathbf{z} = (\mathbf{x}, \mathbf{y}) \in (\mathcal{X} \times \mathcal{Y})^m
Input: Number of epochs T
     \mathbf{M} = \mathbf{0} (\mathbf{M} \in \mathbb{R}^{|\mathcal{Y}| \times |\mathcal{X}|})
     for t = 1 to T do
          for i = 1 to m do
               predict \hat{y}_i = \arg\max_{r=1}^{|\mathcal{Y}|} \{ \langle \mathbf{M}_r, \mathbf{x}_i \rangle \}
               set E = \{r \neq y_i : \langle \mathbf{M}_r, \mathbf{x}_i \rangle \geq \langle \mathbf{M}_{y_i}, \mathbf{x}_i \rangle \}
               if E \neq \phi then
                   for all r in E do
                        \mathbf{M}_r = \mathbf{M}_r - \mathbf{x}_i/|E|
                    end for
                    \mathbf{M}_{y_i} = \mathbf{M}_{y_i} + \mathbf{x}_i
               end if
          end for
     end for
Output: H(\mathbf{x}) = \arg \max_{r} \{ \langle \mathbf{M}_r, \mathbf{x} \rangle \}
```

- Learning algorithm: Ultraconservative Multiclass Perceptron Algorithm (UMPA)
 - Maintains a prediction matrix M with one row for each class to be modeled.
 - Ultraconservative, it updates only the vectors of the classes that scored higher than the correct class.
- Greedy inference: for every token select the label with the highest score that is consistent with the previous labels.
- Two classifiers trained: one for entity type + subtype (89 classes), another for the entity mention type (NOM, NAM, PRO).

Features

Model M₁ - adds lexical attributes:

- The token lexem.
- The suffixes and prefixes of length 2, 3, and 4.
- The sequence obtained by removing all letters from the token.
- The sequence obtained by removing all alphanumeric characters from the token.
- isAllDigits Boolean flag set to true if the word contains only digits.
- isAllDigitsOrDots Boolean flag set to true if the word contains only digits or dots.

Model M $_2$ - adds part of speech (POS) attributes.

Model M $_3$ - adds syntactic chunk labels.

Model M₄ - adds class and gazetteer-based attributes:

- isNumber true if the token is a word-spelled number.
- isMultiplier true if the token is a multiplier typically used to compose numbers.
- isDay true if the token is the name of a day of the week.
- isMonth true if the token is the name of a month.
- isPersonTrigger indicates if the token begins or is inside a person trigger.
- knownPerson indicates if the token is part of a sequence that is an known person name.

All models - static context (preceding/following tokens); dynamic context (previous labels).

Evaluation

Training: ACE 2005 + 2007 (780 docs); development (19 docs).

Model	Р	R	F ₁	Best epoch
M1	76.54%	75.27%	75.90	15
M2	76.43%	77.32%	76.87	18
M3	77.51%	77.81%	77.66	19
M4	79.91%	70.38%	74.84	29

NERC results on the development set for the entity type/subtype problem.

Model	Р	R	F ₁	Best epoch
M1	78.25%	78.79%	78.52	31
M2	78.54%	79.77%	79.15	35
M3	78.30%	79.37%	78.83	35
M4	80.20%	69.70%	74.58	35

NERC results on the development set for the entity mention type problem.

- ► M3 best for entity type + subtype; M2 best for mention type.
- Quantitative analysis: training time 175 seconds/epoch. Labels 1,600 words/second.

Architecture

Named Entity Recognition and Classification

Coreference Resolution

Machine Translation

Resources

Evaluation

Approach 1: Round Robin Resolution

```
Input: A text T
  for all Pronouns p in T do
     Find candidate set C
     Filter candidate set
      C' = \{c \in C \mid F_1(p,c) > 0\}
     if C' is empty then
        Pronoun p is considered unsolved
     else
        Initialize scores \forall c \in C' \ score[c] = 0
        for all Pairs c_1, c_2 \in C' where
         dist(c_1, p) < dist(c_2, p) do
          if F_2(p, c_1, c_2) > 0 then
             Increment score[c_1]
          else
             Increment score[c_2]
          end if
        end for
        Set c_a = \arg \max_c score[c] as the
         antecedent of p
     end if
  end for
```

Output: The text T with pronouns resolved

Is candidate **X** a better antecedent of pronoun **P** than candidate **Y**?

Execution flow:

- 1. Construct the set of all candidates that pass the filter F_1 .
- 2. Compare each candidate with the others (F_2) . Increment score of best candidate.
- 3. Select candidate with the highest score.

Approach 2: Lineal Resolution

```
Input: A text T
  for all Pronouns p in T do
     Find candidate set C
     Filter candidate set
      C' = \{c \in C \mid F_1(p,c) > 0\}
     if C' is empty then
       Pronoun p is considered unsolved
     else
       Set as best candidate c_b the candidate in C'
       closest to p
       for all Candidates c \in C'
         from closest to furthest to p do
          if F_2(p, c_t, c) < 0 then
             Set c as new best candidate c_b
          end if
       end for
       Set the best candidate c_b as the
         antecedent of p
     end if
  end for
```

Output: The text T with pronouns resolved

Is candidate **X** a better antecedent of pronoun **P** than candidate **Y**?

Execution flow:

- 1. Construct the set of all candidates that pass the filter F_1 .
- 2. Set as best candidate the closest to the pronoun.
- 3. Inspect all candidates from closest to furthest to the pronoun. Greedily update the best candidate.

Details

Features:

- Language independent features: form, POS tag, and chunk tag for pronoun, candidate, and a given context window for both pronoun and candidate.
- Language dependent features:
 - Flag that indicates if ASVM-Tools had to change the word form to restore the feminine marker (simple indicator of genre).
 - The word starts with the determinant Al.

Classifier:

Support Vector Machines with a polynomial kernel of degree 2.

Evaluation

- Corpus: the Newswire section of ACE 2005 + 2007. Training: 453 documents; development: 40 docs.
- Candidate search span: current sentence + 2 previous sentences. Context window size: +5 words.

		Overall	Evaluable		
Mod	del	Assignation	Assignation	Precision	Recall
Round	Filter	46%	52%	65%	34%
Robin	No	100%	100%	11%	11%
Lineal	Filter	46%	52%	63%	33%
	No	100%	100%	50%	50%

Coreference resolution performance.

Training	F_1	6h 8min
	F_2	167h 39min

Round	Filter	7min
Robin	No	4h 55min
Lineal	Filter	7min
	No	26min

Quantitative analysis.

Precision more important: selected the Round Robin algorithm with filtering.

Architecture

Named Entity Recognition and Classification

Coreference Resolution

Machine Translation

Resources

Evaluation

Approach

- Phrase-based statistical MT built using freely-available components.
- Trigram language models built using the SRI Language Modeling Toolkit.
- Translation models built using word-aligned corpora.
 - ► Word alignments generated with *GIZA++ SMT Toolkit*.
 - ► The phrase-extract algorithm of Och (2002) applied on the Viterbi output of Giza++. Considered phrases up to length 5. Phrase pairs scored using unsmoothed Maximum Likelihood Estimation (MLE).
 - ► The *Pharaoh* beam search decoder used for the arg max search. Probability models combined in a log-linear fashion:

$$egin{aligned} \mathit{logP}(e|f) &\propto \ \lambda_{\mathit{Im1}} \mathit{logP}(e)_1 + ... + \lambda_{\mathit{ImN}} \mathit{logP}(e)_M \ &+ \lambda_{\mathit{fe1}} \mathit{logP}(f|e)_1 + ... + \lambda_{\mathit{feN}} \mathit{logP}(f|e)_N \ &+ \lambda_{\mathit{ef1}} \mathit{logP}(e|f)_1 + ... + \lambda_{\mathit{efN}} \mathit{logP}(e|f)_N \end{aligned}$$

Experimental Settings

Translation models:

- AE Arabic English Parallel News.
- AR Arabic News Translation Text.
- UN United Nations (2000-2002). For practical reasons we limit to the portion covering years 2000-2002 (1,339,339 sentence pairs, 50.3 million Arabic words, 45.5 million English words).

English language models:

- AE Arabic English Parallel News.
- AR Arabic News Translation Text.
- AM ACE 2005 Multilingual Training Corpus.
- AU ACE 2005 Multilingual Unsupervised Training Data.
- **UN** United Nations (1993-2002).

System parameters tuned to maximize the overlap of named entities between translation and reference.

Evaluation

Two development corpora used: DEV_{AE} consists of 961 sentence pairs extracted from the 'AE' corpus (in domain); DEV_{ET} is based on a subset of 987 sentence pairs from the 'REFLEX' training and development set.

metric	DEV _{AE}	DEV _{ET}
BLEU-4	0.19	0.06
GTM-1	0.17	0.12
MTR-wnsyn	0.56	0.23
NIST-5	5.55	2.65
RG-W-1.2	0.23	0.15
NE-overlap-**	0.30	0.12
NE-match-*	0.37	0.10

MT performance

Quantitative analysis: training on the AE corpus – 1 day; training on the UN corpus – almost 3 weeks. Translation time: 72 seconds/document (includes preprocessing).

Architecture

Named Entity Recognition and Classification

Coreference Resolution

Machine Translation

Resources

Evaluation

Resources

Gazetteers:

All gazetteers used in our system belong to *BADR* (*Barcelona Arabic Database for Named Entity Recognition*). Contains:

BARTIme: temporal expressions.

BARMOney: monetary

expressions.

BARNAme: names of people.

BARCO: organizations,

associations, names

of companies.

BARLO: locations, cities,

districts.

Tools:

Linguistic Processing of Arabic performed using the ASVM-Tools: sentences are transformed into Buckwalter's encoding, tokenized, lemmatized, part-of-speech (PoS) tagged, and base phrase chunked.

Language models are built using the SRI Language Modeling Toolkit.

Word alignments are obtained using the *GIZA++ SMT Toolkit*.

Architecture

Named Entity Recognition and Classification

Coreference Resolution

Machine Translation

Resources

Evaluation

Overall Results

- Out of 4189 entities:
 - Identified correctly: 853 (20.36%);
 - Partially identified: 1089 (26.00%);
 - Failed to identify: 2247 (53.64%);
 - False positives: 3421.
- Proper nouns (43.73%):
 - Identified correctly: 499 (27.24%);
 - Partially identified: 389 (21.23%);
 - Failed to identify: 944 (51.53%);
 - ► False positives: 1630.
- Common nouns (49.96%):
 - Identified correctly: 355 (16.96%);
 - Partially identified: 623 (29.77%);
 - Failed to identify: 1115 (53.27%);
 - False positives: 1760.
- Pronouns (6.30%):
 - Identified correctly: 8 (3.03%);
 - Partially identified: 68 (25.76%);
 - Failed to identify: 188 (71.21%);
 - False positives: 311.

Diagnostic Results

- Out of 4189 entities:
 - Identified correctly: 1066 (25.45%);
 - Partially identified: 1068 (25.50%);
 - Failed to identify: 2055 (49.05%);
 - False positives: 4635 (we used predicted coreference chains!)
- Proper nouns (43.73%):
 - Identified correctly: 627 (34.22%);
 - Partially identified: 318 (17.36%);
 - Failed to identify: 887 (48.42%);
 - False positives: 1917.
- Common nouns (49.96%):
 - Identified correctly: 433 (20.69%);
 - Partially identified: 667 (31.87%);
 - Failed to identify: 993 (47.44%);
 - False positives: 2365.
- Pronouns (6.30%):
 - Identified correctly: 6 (2.27%);
 - Partially identified: 83 (31.44%);
 - Failed to identify: 175 (66.29%);
 - False positives: 353.

Other Common Errors

- Manually analyzed 498 errors that are not coreference errors nor complete MT mistakes.
- Error distribution:

 - 132 (26.51%) were mistranslated, e.g., ايرلاندا الشمالية translated as "a a", should be "North Ireland".
 - 38 (7.63%) were partially translated, e.g., الأسلحة translated as "of weapons", "of" has been wrongly added.
 - The others are NERC errors, e.g., partially identified entities or misclassified entities.

- Proposed a complete ET model where all components modeled with machine learning. The system core based on statistical MT.
- ▶ Overall results not so good (solid —60 value score, but decent unweighted F score). But this is a baseline system.
- Large room for improvement:
 - ► NER: process destination language (LDC's perfect matching Arb-Eng: 62.3%).
 - ► NER: generate extent?
 - MT: train on data from ACE domains.
 - MT: change to discriminative specialized models that focus on entity translation.
 - CR: (a) handle non-pronominal coreference; (b) handle cataphora; and (c) better features (tuned for ACE).
 - Output format: generate the NAME attributes.
 - Better component integration. Joint NER + MT model?
 - Talk to each other (the NAME attributes, the Al bug)...
- Our approach is (largely) language-independent → address other languages as future work.

Thank you! Questions?