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1 Introduction

We describe the UPC Arabic-to-English Entity
Translation System presented at the ACE/ET 2007
Evaluation Campaign, and its application to the
Arabic-to-English Entity Translation task. Our ap-
proach to Entity Translation (ET) is fairly simple.
We have divided the task into three separate sub-
tasks: Named Entity Recognition and Classification
(NERC), Coreference Resolution (CR), and Ma-
chine Translation (MT), which are approached in-
dependently.

Because named entitites are not always unequivo-
cally translated, we deal with Entity Translation es-
sentially as a disambiguation problem. Entities are
disambiguated by means of a state-of-the-art Statis-
tical Machine Translation (SMT) system. This al-
lows us to robustly translate entities in the context
of the whole sentence.

The paper is organized as follows. The System
architecture is deeply described in Section 2. This
includes a detailed description of every component
and its isolated performance, as well as the list of
resources (i.e., tools and corpora) utilized for their
construction. We analyze the overall system perfor-
mance in Section 3. We examine the main merits
and defficiencies of our system through a rigurous
and illustrative error analysis. Finally, in Section 4
main conclusions are drawn and further work is out-
lined.

2 System Architecture

The System architecture is depicted in Figure 1. Our
System receives as input a list of properly format-

ted ACE ‘.sgml’ files. Prior to entering the sys-
tem core, these files are linguistically enriched at
the level of shallow syntax, as described in Sec-
tion 2.4.3. Then, all documents are separatedly pro-
cessed by the NERC, CR, and MT subsystems. Sen-
tences are translated, named entities are recognized
and classified, and coreference chains are detected,
without any kind of interaction between these mod-
ules. Entity translations are obtained by properly
combining their outputs.

Figure 1: System Architecture

During translation we keep track of the correspon-
dence between source (input) words and target (out-
put) words. This will allow us to provide a transla-
tion for almost every named entity recognized in the
source sentence. However, there are two exceptional
situations:

Untranslated Entities In some cases it is not pos-
sible to generate a complete translation for a



named entity. This may happen either because
the named entity contains words which are un-
known to the MT system, or because the MT
system does not know how to correctly handle
the translation of the named entity in the con-
text of the source sentence and the target sen-
tence under construction. In these cases we per-
form a lookup in the‘Translation Repository’.
This repository contains all entities translated
so far over all documents. If no candidate trans-
lation is found we inspect the bilingual gaze-
teers described in Section 2.4.2. If still a trans-
lation can not be found we simply output the
incomplete translation, which contains untrans-
lated Arabic words.

Phrase BoundariesBecause the MT system is not
word-based but phrase-based, it may happen
that a named entity starts or ends in the middle
of a phrase. In this case, we simply output the
whole translation embedding the actual transla-
tion.

Finally, we use the information provided by the
CR subsystem to group together the different men-
tions of every entity in each document.

Below, we provide a description of every compo-
nent, as well as the tools and data utilized for its con-
struction. The isolated performance of every compo-
nent is evaluated.

2.1 Named Entity Recognition and
Classification

2.1.1 Approach

We use the Arabic NERC system for several pur-
poses: (a) identification of the boundaries of the
entities to be translated, (b) detection of the entity
types and subtypes (e.g.,Airport is one of the
subtypes of the typeFACILITY ), and (c) identifi-
cation of the type of the entity mention (e.g., nom-
inal or pronominal). We model all these operations
jointly using a sequential tagger that assigns a Be-
gin/Inside/Outside (BIO) label to each of the to-
kens in the document word sequences. The BIO
labels are extended with a concatenation of the en-
tity features to be learned. For example, the la-
bel B-FAC-Plant-NOM indicates that the corre-
sponding token begins a nominal mention of an en-
tity of type FACILITY and subtypePlant .

Input: A training samplez = (x, y) ∈ (X × Y)m

Input: Number of epochsT

M = 0 (M ∈ IR|Y|×|X|)
for t = 1 to T do

for i = 1 to m do
predict ŷi = arg max

|Y|
r=1

{〈M r, xi〉}
setE = {r 6= yi : 〈Mr, xi〉 ≥ 〈Myi

, xi〉}
if E 6= Ø then then

for all r in E do do
Mr = M r − xi/|E|

end for
Myi

= Myi
+ xi

end if
end for

end for

Output: H(x) = arg maxr{〈M r, x〉}

Algorithm 1: The Ultraconservative Multiclass
Perceptron.

We developed the token-level BIO classifiers us-
ing the Ultraconservative Multiclass Perceptron Al-
gorithm (UMPA) (Crammer and Singer, 2003). The
UMPA is a variation of the Perceptron Algorithm
(PA) (Rosenblatt, 1958). Unlike the original PA,
which is a binary classifier that learns a single pre-
diction vector, the UMPA maintains a prediction ma-
trix M with one row for each class to be modeled.
The UMPA is ultraconservative in the sense that it
updatesM only on rounds with prediction errors.
Furthermore, the algorithm updates only the vector
of the incorrectly-predicted class and of the classes
that scored higher than the correct class. We sum-
marize the algorithm in Algorithm 1. For each train-
ing examplexi, the algorithm constructs the setE
of classes that score higher than the correct class
yi. If the set is non-empty, i.e., there was a predic-
tion error, the algorithm adds the vector of the cur-
rent sample to the vector of the correct classMyi

,
and subtractsxi/|E| from the vector of each class in
E. The UMPA was empirically shown to perform
well in several classification problems, even though
it makes a smaller number of updates than the regu-
lar PA (Crammer and Singer, 2003).

We have extended the original UMPA with av-
eraged predictions (Freund and Shapire, 1999). In
other words, in our actual UMPA implementation
the predicted label̂y of an unlabeled examplex is
calculated as:ŷ = arg maxr{〈Avgr, x〉}, where
Avgr is the sum of all the instances ofM r seen in
training, weighted by the number of learning itera-



tions they survived unchanged.
It is straightforward to extend this algorithm with

kernel functions (see (Freund and Shapire, 1999) for
the explanation). Nevertheless, in order to minimize
training and prediction times, in this work we used
only the default algorithm in primal form, as illus-
trated in Algorithm 1.

The UMPA algorithm gives a prediction for each
individual token in the document stream. We select
a consistent solution at sentence level using a sim-
ple greedy inference strategy: for every token we se-
lect the label with the highest score that is consistent
with the previously-assigned label. For example, an
I label cannot follow anO label.

2.1.2 Features

For feature generation we explored four models
that include lexical, morphological, syntactic, and
semantic attributes. We detail these models next.

Model M1 - contains the following lexical at-
tributes:

• The token lexem.

• The suffixes and prefixes of length 2, 3, and 4.

• The sequence obtained by removing all letters
from the token.

• The sequence obtained by removing all al-
phanumeric characters from the token.

• isAllDigits - Boolean flag set to true if the word
contains only digits.

• isAllDigitsOrDots - Boolean flag set to true if
the word contains only digits or dots.

Model M2 - adds part of speech (POS) attributes.

Model M3 - adds syntactic chunk labels.

Model M4 - adds the following class and gazetteer-
based attributes:

• isNumber- Boolean flag set to true if the token
is a word-spelled number (e.g.,

������� �� , sbEp,
Seven).

• isMultiplier - Boolean flag set to true if the to-
ken is a multiplier typically used to compose
numbers (e.g.,

�� �	 
, >lf, Thousand).

• isDay - Boolean flag set to true if the token is
the name of a day of the week (e.g.,�� ��� �� �	 
,
Alsbt, Saturday).

• isMonth - Boolean flag set to true if the to-
ken is the name of a month (e.g.,
� ��� , mArs,
March).

• isPersonTrigger- BIO flag that indicates if the
token begins or is inside a sequence of words
that typically precedes a person entity (e.g,
� ���� ���� �	 
, ALsfyr, Ambassador).

• knownPerson- BIO flag that indicates if the to-
ken is part of a sequence that is an entry in the
person name gazetteer.

In addition to the features introduced above we
generate a set of context-based features for each to-
ken: (a) a set of static-context features based on the
features of the tokens preceding/following the cur-
rent token, and (b) a set of dynamic-context features
based on the NERC BIO labels of the previous to-
kens. For the dynamic-context features we used the
gold labels during training and the predicted labels
during actual tagging.

2.1.3 Experimental Setting

We trained the Arabic NERC on a corpus that
concatenates the ACE Arabic training data from
2005 and 2007. We tuned our system’s parameters
on the ACE 2007 development corpus. After elim-
inating documents from the training corpus that ap-
pear in the development corpus as well, the training
corpus contains 780 documents. The development
corpus contains 19 documents.

Our initial goal was to develop a single NERC
system that would jointly recognize and classify all
the needed entity attributes: entity types and sub-
types and entity mention types. Unfortunately, such
a system generates 223 individual classes and does
not fit in the memory of our development machines.
Given this limitation, we decided to build two sep-
arate taggers: the first recognizes the entity types
and subtypes while the second identifies the types
of the entity mentions. The first tagger works with
89 BIO classes and the second with 7. Both taggers
use the feature sets described in the previous subsec-
tion. Both taggers were trained on the heads of the
entity mentions. We currently do not use the entity
extents.

2.1.4 Performance

Table 1 shows the performance of the tagger for
the detection and classification of entity types and



Model P R F1 Best epoch
M1 76.54% 75.27% 75.90 15
M2 76.43% 77.32% 76.87 18
M3 77.51% 77.81% 77.66 19
M4 79.91% 70.38% 74.84 29

Table 1: NERC results on the development set for
the entity type/subtype problem.

Model P R F1 Best epoch
M1 78.25% 78.79% 78.52 31
M2 78.54% 79.77% 79.15 35
M3 78.30% 79.37% 78.83 35
M4 80.20% 69.70% 74.58 35

Table 2: NERC results on the development set for
the entity mention type problem.

subtypes, for the four feature models. For this anal-
ysis we used a strict scorer that considers an en-
tity as correct only if both its boundaries and its
class match the key. The table indicates that, as ex-
pected, morphological and syntactic features help,
but surprisingly, class and gazetteer features do not.
We do not have a complete understanding of why
this happens, but we believe that our tagger can-
not generalize well when an ambiguous gazetteer is
used on such a sparse corpus. With respect to the
quantitative performance, this tagger spent 175 sec-
ond/epoch when training on a 3.2GHz Pentium IV
machine. During prediction, the tagger labels 1,600
words/second on the same computer.

Table 2 shows the performance of the second tag-
ger, which identifies the types of entity mentions.
The results reported in the table support the intu-
ition that lexical and morphological information is
sufficient for the identification of the mention types:
the best model is model M2 with an F1 score of
79.15. Because the second tagger has to handle
fewer classes (7 versus 89) it trains faster than the
first one (54 second/epoch), and labels new text
quicker (8100 words/second).

2.2 Coreference Resolution

2.2.1 Approach

We have incorporated a baseline generic pronom-
inal anaphora resolution component in our system.
This subsystem uses a machine learning approach to
coreference resolution, specifically, the competition

learning approach of (Yang et al., 2003) and (Con-
nolly et al., 1997).

The problem of pronominal anaphora resolution
can be seen as a classification problem: for each pro-
noun whose antecedent has to be identified a set of
candidates is extracted, the pronoun is paired with
each candidate, and for each pair a classifier is used
to determine if they corefer, that is, if the candidate
is the antecedent of the pronoun. If several candi-
dates are classified as coreferring, most approaches
use the confidence of the classifier as the criterium
to break ties.

On the contrary, (Yang et al., 2003) and (Connolly
et al., 1997) propose a different approach: first can-
didates are filtered using a single-candidate classi-
fier, and then for all the remaining candidates the
system decides which one is the most likely an-
tecedent through a set of pair-wise comparisons. It
remains a binary classification problem, but instead
of focusing on:

• Is candidateX an antecedent of pronounP?

the question is:

• Is candidateX a better antecedent of pronounP
than candidateY?

Even if this is a general approach, as a first step
towards a more complex system our work has only
covered the resolution of pronouns. Moreover, only
nouns and other pronouns have been considered as
antecedent candidates.

We have considered two different algorithms. The
first one, closest to the proposal of (Yang et al.,
2003), is detailed in Algorithm 2. For each pronoun
in the text, the set of candidates is constructed. We
have taken as candidates all the pronouns and nouns
in a window of the previous sentences, as well as
those in the same sentence as the pronoun but ap-
pearing before it (we have not considered cataphoric
relations). This window size is the same as in (Yang
et al., 2003). This candidate set is filtered. If no can-
didates remain after the filtering phase, the pronoun
is considered unsolved. Otherwise, each remaining
candidate is compared to the others. Initially all can-
didates are scored zero, and each time a candidate
is judged better than another one its score increases
one. After all pairwise comparisons have been per-
formed, the highest scored candidate is selected as



antecedent of the pronoun. If there is more than one
such candidates, the usual criterion of selecting the
closest to the pronoun is used.

The second algorithm, detailed in Algorithm 3,
uses a strategy similar to that of (Connolly et al.,
1997). In this case, after the filtering phase the clos-
est remaining candidate is selected as best candidate
so far. Then, this best candidate is compared succes-
sively to the next candidate, moving from right to
left (that is, increasing the distance to the pronoun).
If at any step, the next candidate is better that the
best candidate so far, it becomes the new best can-
didate so far, and the process continues. After all
candidates have been compared, the best candidate
found is selected as antecedent of the pronoun.

The binary classification functionsF1 andF2 are
the same for both approaches. They can be learned
with different Machine Learning approaches from
an annotated corpus. For each annotated pronoun
p in the corpus, several examples can be generated:

• For each candidatec in the sentence window,
the tuple(p, c) is a positive example forF1 if
the candidate and the pronoun corefer, and a
negative example otherwise.

• For each pair of candidatesc1 and c2 in the
sentence window, wherec1 is closer to the pro-
noun, the tuple(p, c1, c2) is a positive example
for F2 if c1 corefers with the pronoun andc2

does not, and a negative example ifc2 corefers
with the pronoun andc1 does not. If both can-
didates corefer or neither does, no examples for
F2 are generated.

We have chosen to learn these functions using
Support Vector Machines (Vapnik, 1995), which are
known to give good performance in Natural Lan-
guage Processing tasks. A polynomial kernel of
degree 2 and shallow syntactic features have been
used for the learning. For each element in the ex-
ample tuples (pronouns or candidates), the form,
part-of-speech and base phrase chunk tag (as given
by ASVM-Tools) of the words in a window around
the pronoun or candidate are considered as features.
Two more simple but Arabic-specific features have
also been considered for all words in this window:
whether ASVM-Tools had to change the form to re-
store the feminine marker (which we have taken as

Input: A text T

for all Pronounsp in T do
Find candidate setC
Filter candidate set
C′ = {c ∈ C | F1(p, c) > 0}

if C′ is emptythen
Pronounp is considered unsolved

else
Initialize scores∀c ∈ C′ score[c] = 0
for all Pairsc1, c2 ∈ C′ where
dist(c1, p) < dist(c2, p) do
if F2(p, c1, c2) > 0 then

Incrementscore[c1]
else

Incrementscore[c2]
end if

end for
Setca = arg maxc score[c] as the

antecedent ofp
end if

end for

Output: The textT with pronouns resolved

Algorithm 2: Round Robin Resolution

Input: A text T

for all Pronounsp in T do
Find candidate setC
Filter candidate set
C′ = {c ∈ C | F1(p, c) > 0}

if C′ is emptythen
Pronounp is considered unsolved

else
Set as best candidatecb the candidate inC′ closest top
for all Candidatesc ∈ C′

from closest to furthest top do
if F2(p, ct, c) < 0 then

Setc as new best candidatecb

end if
end for
Set the best candidatecb as the

antecedent ofp
end if

end for

Output: The textT with pronouns resolved

Algorithm 3: Lineal Resolution



Overall Evaluable
Model Assignation Assignation Precision Recall

Round Filter 46% 52% 65% 34%
Robin No 100% 100% 11% 11%
Lineal Filter 46% 52% 63% 33%

No 100% 100% 50% 50%

Table 3: Coreference resolution performance

a simple indicator of genre) and whether the word
begins with the determinant� 
, Al.

The presence of few language-specific features
makes our approach almost language independent.

For the training of SVM we have used the freely
available package TinySVM1.

2.2.2 Experimental Setting

To evaluate the performance of the system, we
have built a single collection with the Arabic
Newswire sections of the ACE 2005 and ACE 2007
Multilingual Training Data. The Entity Mention
coreference information has been used. This col-
lection has been randomly split into a training set
containing 453 documents, and a test set containing
40. No cross-fold validation has been possible due
to the high computational cost of SVM training.

Antecedent candidates have been looked for in the
previous two sentences (as in (Yang et al., 2003)),
and a window size of 5 words for the features of the
words has been used.

In addition to comparing the Round Robin and
Lineal algorithms, we have tested versions of these
algorithms without the candidate filtering phase.
Without filtering, an antecedent will be found for
all pronouns, but we expect the precision of the as-
signed antecedents to decrease.

We will consider the following metrics for evalu-
ation:

Assignation Fraction of pronouns for which an
antecedent has been proposed, from the to-
tal number of pronouns: Assignation =
#Proposed

#Total
.

Precision Fraction of pronouns for which the pro-
posed antecedent is correct, from the pronouns

1http://chasen.org/˜taku/software/
TinySVM/

Training F1 6h 8min
F2 167h 39min

Round Filter 7min
Robin No 4h 55min
Lineal Filter 7min

No 26min

Table 4: Coreference resolution running time

for which an antecedent has been proposed as-
signed:Precision = #Correct

#Proposed
.

Recall Fraction of pronouns for which the proposed
antecedent is correct, from the total number of
pronouns:Recall = #Correct

#Total
.

Given that not all pronouns in the ACE Data have
been annotated, we will consider in our evaluation
only those pronouns which have been tagged as En-
tity Mentions.

2.2.3 Performance

Table 3 shows the performance of the four con-
sidered algorithms on the test data set, and Table 4
gives the running times for the training of the two
functions, as well as for the resolution of the coref-
erence in the test set2.

As it can be seen in the tables, if filtering is used,
there is no significant difference in the behavior of
the two algorithms, neither in terms of performance
nor in computational cost. The precision is around
65%, low for the state of the art, but this is not sur-
prising, as these are baseline results. Given that an
antecedent is proposed for only 52% of the evaluable
pronouns, the recall is also low, around 35%.

If filtering is disabled, antecedents are assigned
for all pronouns in the data set and, as expected,

2On a machine equiped with a Pentium 4 3.2GHz



precision decreases. Nevertheless, whereas in the
case of the lineal algorithm, precision only lowers
to 50% and there is an increase in recall; for round
robin precision goes down to 11%, and recall also
decreases. We believe the reason for this behavior
is that, without filtering, a great number of irrelevant
candidates can appear (those which would have been
filtered), and some of them can achieve high scores
due to comparisons among themselves in the round
robin approach. It is hence possible that they are se-
lected as antecedent. In the lineal approach, these
irrelevant candidates are more likely to be discarded
in the direct comparison against the best candidate
so far, and their influence on the overall process is
lower.

Moreover, the disabling of filtering produces an
increase in the computational cost of the resolu-
tion process, specially for the round robin algorithm,
which being quadratic multiplies its running time by
a factor of more than 40. In the case of the lineal
algorithm the factor is of about 4.

However, in spite of its benefits the fact that fil-
tering leaves 54% of the pronouns in the whole data
set without candidates indicates that the learner may
need more generalization.

Bearing these results in mind, we have chosen to
use the round robin algorithm with filtering enabled
for the resolution of the pronouns in the final system,
as it is the system which is less computationally de-
manding (its difference with respect to the lineal al-
gorithm is insignificant) and which gives the best re-
sults in precision. We consider in our case precision
to be more important than recall: we would rather
not have an antecedent at all than have a wrong one.

2.3 Machine Translation

2.3.1 Approach

The MT component is a phrase-based SMT sys-
tem (Koehn et al., 2003), built almost entirely using
freely available components.

We use theSRI Language Modeling Toolkit(Stol-
cke, 2002) for language modeling. We build trigram
language models applying linear interpolation and
Kneser-Ney discounting for smoothing.

Translation models are built on top of word-
aligned parallel corpora, as described by Giménez
and Màrquez (2005). We used theGIZA++ SMT

Toolkit3 (Och and Ney, 2003) to generate word
alignments4. We apply the phrase-extract algorithm,
as described by Och (2002), on the Viterbi align-
ments output by GIZA++. We work with the union
of source-to-target and target-to-source alignments,
with no heuristic refinement. Phrases up to length
five are considered. Also, phrase pairs appearing
only once are discarded, and phrase pairs in which
the source/target phrase was more than three times
longer than the target/source phrase are ignored.
Phrase pairs are scored on the basis of unsmoothed
maximum likelihood estimation (MLE).

Regarding the argmax search, we used the
Pharaohbeam search decoder (Koehn, 2004), which
naturally fits with the previous tools. We useM
language models,N generative translation models,
andN discriminative translation models. Probabil-
ity models are combined in a log-linear fashion:

logP (e|f) ∝ λlm1logP (e)1 + ... + λlmN logP (e)M

+ λfe1logP (f |e)1 + ... + λfeN logP (f |e)N

+ λef1logP (e|f)1 + ... + λefN logP (e|f)N

P (e)i (i ∈ [1,M ]) correspond to the language
models. P (f |e)j and P (e|f)j (j ∈ [1, N ]) cor-
respond to the traditional generative and discrimi-
native translation models, estimated on the basis of
MLE.

2.3.2 Experimental Setting

We train several translation and language models.
Translation models are built on top of parallel texts.
We build separate translation models for each of the
parallel corpora described in Section 2.4.1:

AE Arabic English Parallel News.

AR Arabic News Translation Text.

UN United Nations (2000-2002). For practical rea-
sons we limit to the portion covering years
2000-2002 (1,339,339 sentence pairs, 50.3
million Arabic words, 45.5 million English
words).

Supposedly, ‘AE’ and ‘AR’ models are in-domain
data, and thus provide higher precision, while ‘UN’

3http://www.fjoch.com/GIZA++.html
4The default configuration15H52034435060 was used.



is out-of-domain, providing high recall. Language
models are estimated over monolingual texts, corre-
sponding to the target language. We use the English
side of:

AE Arabic English Parallel News.

AR Arabic News Translation Text.

AM ACE 2005 Multilingual Training Corpus.

AU ACE 2005 Multilingual Unsupervised Training
Data.

UN United Nations (1993-2002).

During decoding, we assume that entities tend
to be translated as blocks, and therefore reordering
is not very important in the context of the overall
task. Based on this assumption we decide to perform
monotonic translations. This will allow us to speed
up translation time and, thus, save up a considerable
amount of time.

2.3.3 Adjustment of Parameters

Parameters are adjusted following a Minimum Er-
ror Rate strategy (Och, 2003). We simply try around
100 configurations over a development set and pick
the best one, according to a given metric.

Since models are built on top of out-of-domain
data, we decided to use two different development
sets. The first set, DEVAE consists of 961 sentence
pairs extracted from the ‘AE’ corpus. We use this
set to get an estimate of the in-domain performance
of the MT system. The second set, DEVET is based
on a subset of the ‘REFLEX’ training and develop-
ment set (v5.0). Specifically, we used the subset of
sentence pairs for which both sides consist of more
than 6 words and no more than 20. A total of 987
sentence pairs fulfill these requirement.

Moreover, because the final purpose of the MT
system is to translate named entities, we optimize
it over a set of metrics specialized in this aspect of
quality. We use the ‘NE’ family of metrics available
in the IQMT Framework for MT Evaluation based
on Human Likeness (Giménez and Amigó, 2006;
Amigó et al., 2006). Named entities in the output
and reference translations are automatically anno-
tated, and compared. Specifically we use two met-
rics:

metric DEVAE DEVET

BLEU-4 0.19 0.06
GTM-1 0.17 0.12
MTR-wnsyn 0.56 0.23
NIST-5 5.55 2.65
RG-W-1.2 0.23 0.15
NE-overlap-** 0.30 0.12
NE-match-* 0.37 0.10

Table 5: MT results on two development sets:
in-domain set (DEVAE), and out-of-domain set
(DEVET , according to several automatic evaluation
metrics.

NE-overlap-** which considers the average pro-
portion of word overlapping over all NE types.

NE-match-* which considers the average lexical
matching over all NE types.

We measure NE quality as:

(NE-overlap-**+ NE-match-*)
2

2.3.4 Performance

Table 5 shows the MT subsystem performance
over two different development sets, according to
several well-known metrics, for the parameter con-
figuration which yields a maximum NE quality in
each case.

Results on the DEVET test set are much lower
than on the DEVAE in-domain set. This means that
the domain of the data used to train the MT system
is very different from the shared-task domain. This
will penalize the system very severely. The decrease
in the case of the two NE specialized metrics may
be due as well to the serious disfluencies in the MT
output which may have caused a number of spurious
errors comitted by the NERC system when annotat-
ing it.

Regarding efficiency, we must distinguish be-
tween system construction and translation times.
Training time depends on the amount of data used
for the construction of the MT component. A base-
line MT system, using only the small ‘AE’ corpus
was built in one day on a 3.2GHz Pentium IV ma-
chine. However, processing the very large ‘UN’ cor-
pus required nearly three weeks.



The whole entity translation of the 150 test doc-
uments took around 3 hours: 45 minutes spent on
Arabic linguistic pre-processing, 45 minutes prop-
erly on translation, and 1.5 hours on finding entity
NE counterpart translations.

Memory requirements are governed in our case by
the the size of language and translation models (MT
component), which must be stored into memory dur-
ing translation. Current models require around 1 Gi-
gabyte. It is also true that, since the set of documents
to be translated is known a priori, we could have op-
timized memory consumption by storing only infor-
mation related to those words which actually appear
in the source. By proceeding in this way memory
consumption reduces to less than 100 Megabytes.

2.4 Resources

2.4.1 Corpora

AE Arabic English Parallel News Text Part 1
(LDC2004T18) – 68,685 sentence pairs; 2 mil-
lion Arabic words, 2.5 million English words.

AR Arabic News Translation Text Part 1
(LDC2004T17) – 18,564 sentence pairs;
440K Arabic words, 579K English words.

AM ACE 2005 Multilingual Training Corpus
(LDC2006T06) – 345K words.

AU ACE 2005 Multilingual Unsupervised Training
Data, English v1.0 (LDC2005E20) – 6.2 mil-
lion words.

UN United Nations Arabic English Parallel Text
Version 2 (LDC2004E13) – 3,776,776 sen-
tence pairs; 138.5 Arabic words, 129.2 English
words.

2.4.2 Gazeteers

The gazetteers used in our system belong to
BADR (Barcelona Arabic Database for Named En-
tity Recognition). BADR is being created for investi-
gation scopes for Arabic NERC, MT, and other NLP
tasks. BADR is freely available on-line5. The whole
of the entries of BADR are in MSA (Modern Stan-
dard Arabic). Its composition is as follows:

BARTIme: temporal expressions.
5http://www.lsi.upc.edu/˜halkoum/badr.

html

BARMOney: monetary expressions.

BARNAme1..BARNAme6: names of people.

BARCO: organizations, associations, names of
companies.

BARLO: locations, cities, districts.

Currently, English Translations for 1,945 items
are available.

2.4.3 Tools

Linguistic Processing of Arabic is carried out
by means of the ASVMTools6 for Arabic (Diab
et al., 2004), which are based on Support Vec-
tor Machines (SVM). Sentences are transformed
into Buckwalter’s encoding, tokenized, lemmatized,
part-of-speech (PoS) tagged, and base phrase chun-
ked. Language models are built using theSRI Lan-
guage Modeling Toolkit(Stolcke, 2002) for lan-
guage modeling. Word alignments are obtained us-
ing theGIZA++ SMT Toolkit(Och and Ney, 2003).

3 Evaluation

3.1 Results

Recognition

In turning to an analysis of the system’s er-
rors, of the 4189 references, the system identified
853 (20.36%) correctly, partially identified 1089
(26.00%) and failed to identify 2247 (53.64%). In
addition, it identified 3431 false positives. Of the
4189 references, 1832 were by way of proper names,
2093 by way of common noun phrases and 264
by way of pronouns. Here, the system identified
499 (27.24%) proper names correctly while partially
identifying 389 (21.23%) and failing to identify
944 (51.53%). It identified 355 (16.96%) common
noun phrases correctly while partially identifying
623 (29.77%) and failing to identify 1115 (53.27%).
It identified 8 (03.03%) of the pronouns correctly
while partially identifying 68 (25.76%) and failing
to identify 188 (71.21%). In every case, the system
incorrectly identified a significant number of false
positives including 1360 false proper name refer-
ences, 1760 false common noun phrase references

6http://www1.cs.columbia.edu/˜mdiab/
software/ASVMTools_2.0.tar.gz



and 311 false pronominal references. Clearly the
major problem was in handling pronominal refer-
ences which was at least in part due to an inade-
quate reference resolution procedure. The system
performed significantly better with respect to recog-
nizing proper name references as compared to com-
mon noun phrase references.

Translation

In regard to the system’s translation errors, the
results of the diagnostic run with perfectly correct
entity detection indicate that the system translated
1066 (25.45%) correctly, translated 1068 (25.50%)
partially correctly and failed to translate 2055
(49.05%). In addition, it translated 4635 false pos-
itives. Of the 1832 proper names, the system trans-
lated 627 (34.22%) correctly while translating 318
(17.36%) partially correctly and mistranslating 887
(48.42%). Of the 2093 common noun phrases,
the system translated 433 (20.69%) correctly while
translating 667 (31.87%) partially correctly and mis-
translating 993 (47.44%). Of the 264 pronouns, the
system only translated 6 (02.27%) correctly while
partially translating 83 (31.44%) and failing to trans-
late 175 (66.29%). In every case, the system incor-
rectly translated a significant number of false posi-
tives including 1917 false proper names, 2365 false
common noun phrases and 353 false pronouns. The
system performed better with respect to translat-
ing common noun phrases as compared to proper
names and significantly better than pronominal ex-
pressions. Still while it is difficult to tease apart
errors of translation from errors of detection and
recognition, it is clear that the translation system did
not perform as well as could be expected.

3.2 Error Analysis

In order to glean some additional information about
the system’s behavior, we categorized 498 of the
1089 partial identifications with respect to six types
of errors. These included examples of:

1. misidentified entities:

• �� 
� �� 
 (“the journalist” ), wrongly identi-
fied as NE because the article has not been
separated by the light-stemmer.

•
�� 	� � � �� 
 � � �� �� 	 �� �� �	 
 
 (“separatism
is responsible of”), wrongly identified as

NE because partial overlapping with a real
NE.

•
�����
� 	 
 (“the police” ), wrongly identified
as NE because the article has not been sep-
arated by the light-stemmer.

2. partially identified entities:

• � �� �� (“President”), translated as“British
Prime Minister”.

• � 	� �� � (“Minister” ), translated “Trade
Minister” .

•
������ (“Government”), translated“Clin-
ton administration”.

3. misclassified entities:

•
�� �� �� ��� (“Province government”), classifed
as PER (i.e., person), where the correct
class is LOC (i.e., location)

• �� � �� � �� ���� � 	� (“Burkina Faso”), classified
as PER, where the correct class is LOC.

4. mistranslated entities:

• �� , translated as“them-in” , should be
“them” .

•
�� �� 	 � � 
� 	 
 
� �	 
� 	� 
 translated as“a a” ,

should be“North Ireland” .

• � ��� �	� �� � 
 � 
� �� �� �� 
� ��	 ��� translated
as“of of of of” , should beXINHUA press
agency”.

5. partially translated entities:

•
���  � 
 
 translated as“of weapons”, “of”
has been wrongly added.

Of the 498 items inspected, 274 (55.02%) were
misidentified named entities (of which 115, i.e.,
23.09%, were due to poor stemming), 20 (4.02%)
were partially identified named entities, 16 (3.21%)
were misclassified, 132 (26.51%) were mistrans-
lated, 38 (7.63%) were partially translated and 18
(3.61%) were both misclassified and mistranslated.

4 Conclusions and Further Work

From the nine teams which had originally communi-
cated their intention to participate, only three man-
aged to present a system to the ET task. However,



our system performance is far from the top-scoring
system.

The room for improvement is large. First, the iso-
lated behaviour of the different components must be
improved. In the case of the MT subsystem, the
main limitation is that traditional phrase-based SMT
models work on sequences of words (i.e., phrases)
independently from their entity type, and the con-
text surrounding them in the source sentence is not
fully exploited. Other kinds of models should be
employed instead. For instance, ET specialized dis-
criminative models in the shape of Giménez and
Màrquez (2007)’s could be better suited for this task,
specially taking into account that the goal is not to
translate the whole sentence but only some pieces
of it. In the case of the coreference resolution com-
ponent, it could be easily extended to handle non-
pronominal coreference, as well as some forms of
cataphora. Given that in the context of this sys-
tem the component should deal with coreference be-
tween entities, we think there is still further room
for a more accurate tuning of this generic subsystem
to the task. In addition, the influence of the used
features, as well as the addition of new ones, such
as the ones used by (Mitkov et al., 1998), should be
studied.

Second, we can improve the integration of the sys-
tem components. Currently, components have been
integrated in a hard manner, both at construction and
usage times. The three subsystems have been trained
independently from each other, and are run indepen-
dently, thus they do not benefit from each other’s
results for the purpose of the whole task. Better in-
tegration methods must be studied.

Finally, although we focus in Arabic-to-English,
our approach is language independent. At the short
term, we plan to apply it to new language pairs, such
as Chinese-English.
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