Maximum Entropy Markov Models for Information Extraction and Segmentation

Andrew McCallum
Dayne Freitag
Just Research, 4616 Henry Street, Pittsburgh, PA 15213 USA

Fernando Pereira
AT&T Labs - Research, 180 Park Ave, Florham Park, NJ 07932 USA

Abstract

Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many text-related tasks, such as part-of-speech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial distributions over a discrete vocabulary, and the HMM parameters are set to maximize the likelihood of the observations. This paper presents a new Markovian sequence model, closely related to HMMs, that allows observations to be represented as arbitrary overlapping features (such as word, capitalization, formatting, part-of-speech), and defines the conditional probability of state sequences given observation sequences. It does this by using the maximum entropy framework to fit a set of exponential models that represent the probability of a state given an observation and the previous state. We present positive experimental results on the segmentation of FAQ's.

1. Introduction

The large volume of text available on the Internet is causing an increasing interest in algorithms that can automatically process and mine information from this text. Hidden Markov models (HMMs) are a powerful tool for representing sequential data, and have been applied with significant success to many text-related tasks, including part-of-speech tagging (Kupiec, 1992), text segmentation and event tracking (Yamron, Carp, Gillick, Lowe, & van Mulbregt, 1998), named entity recognition (Bikel, Schwartz, & Weischedel, 1999) and information extraction (Leek, 1997; Freitag & McCallum, 1999).

HMMs are probabilistic finite state models with parameters for state-transition probabilities and state-specific observation probabilities. Greatly contributing to their popularity is the availability of straightforward procedures for training by maximum likelihood (Baum-Welch) and for using the trained models to find the most likely hidden state sequence corresponding to an observation sequence (Viterbi).

In text-related tasks, the observation probabilities are typically represented as a multinomial distribution over a discrete, finite vocabulary of words, and Baum-Welch training is used to learn parameters that maximize the probability of the observation sequences in the training data.

There are two problems with this traditional approach. First, many tasks would benefit from a richer representation of observations—in particular a representation that describes observations in terms of many overlapping features, such as capitalization, word endings, part-of-speech, formatting, position on the page, and node memberships in WordNet, in addition to the traditional word identity. For example, when trying to extract previously unseen company names from a newswire article, the identity of a word alone is not very predictive; however, knowing that the word is capitalized, that is a noun, that it is used in an appositive, and that it appears near the top of the article would all be quite predictive (in conjunction with the context provided by the state-transition structure). Note that these features are not independent of each other.

Furthermore, in some applications the set of all possible observations is not reasonably enumerable. For example, it may beneficial for the observations to be whole lines of text. It would be unreasonable to build a multinomial distribution with as many dimensions as there are possible lines of text. Consider the task of segmenting the questions and answers of a frequently asked questions list (FAQ). The features that are indicative of the segmentation are not just the individual words themselves, but features of the line as a whole, such as the line length, indentation, total amount of whitespace, percentage of non-alphabetic characters, and...
grammatical features. We would like the observations to be parameterized with these overlapping features.

The second problem with the traditional approach is that it sets the HMM parameters to maximize the likelihood of the observation sequence; however, in most text applications, including all those listed above, the task is to predict the state sequence given the observation sequence. In other words, the traditional approach inappropriately uses a generative joint model in order to solve a conditional problem in which the observations are given.

This paper introduces maximum entropy Markov models (MEMMs), which address both of these concerns. To allow for non-independent, difficult to enumerate observation features, we move away from the generative, joint probability parameterization of HMMs to a conditional model that represents the probability of reaching a state given an observation and the previous state. These conditional probabilities are specified by exponential models based on arbitrary observation features. The exponential models follow from a maximum entropy argument, and are trained by generalized iterative scaling (GIS) (Darroch & Ratcliff, 1972), which is similar in form and computational cost to the expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). The “three classic problems” (Rabiner, 1989) of HMMs can all be straightforwardly solved in this new model with new variants of the forward-backward, Viterbi and Baum-Welch algorithms.

The remainder of the paper describes our alternative model in detail, explains how to fit the parameters using GIS, (for both known and unknown state sequences), and presents the variant of the forward-backward procedure, out of which solutions to the “classic problems” follow naturally. We also give experimental results for the problem of extracting the question-answer pairs in lists of frequently asked questions (FAQs), showing that our model increases both precision and recall, the former by a factor of two.

2. Maximum-Entropy Markov Models

A hidden Markov model (HMM) is a finite state automaton with stochastic state transitions and observations (Rabiner, 1989). The automaton models a probabilistic generative process whereby a sequence of observations is produced by starting in some state, emitting an observation selected by that state, transitioning to a new state, emitting another observation—and so on until a designated final state is reached. More formally, the HMM is given by a finite set of states \(S \), a set of possible observations \(O \), two conditional probability distributions: a state transition probability from \(s' \) to \(s, P(s'|s) \) for \(s, s' \in S \) and an observation probability distribution, \(P(o|s) \) for \(o \in O, s \in S \), and an initial state distribution \(P_0(s) \). A run of the HMM pairs an observation sequence \(o_1 \cdots o_m \) with a state sequence \(s_1 \cdots s_m \). In text-based tasks, the set of possible observations is typically a finite character set or vocabulary.

In a supervised task, such as information extraction, there is a sequence of labels \(l_1 \cdots l_m \) attached to each training observation sequence \(o_1 \cdots o_m \). Given a novel observation, the objective is to recover the most likely label sequence. Typically, this is done with models that associate one or more states with each possible label. If there is a one-to-one mapping between labels and states, the sequence of states is known for any training instance; otherwise, the state sequence must be estimated. To label an unlabeled observation sequence, the Viterbi path is calculated, and the labels associated with that path are returned.

2.1 The New Model

As an alternative to HMMs, we propose maximum entropy Markov models (MEMMs), in which the HMM transition and observation functions are replaced by a single function \(P(s'|s, o) \) that provides the probability of the current state \(s \) given the previous state \(s' \) and the current observation \(o \). In this model, as in most applications of HMMs, the observations are given—reflecting the fact that we don’t actually care about their probability, only the probability of the state sequence (and hence label sequence) they induce. In contrast to HMMs, in which the current observation only depends on the current state, the current observation in an MEMM may also depend on the previous state. It can then be helpful to think of the observations as being associated with state transitions rather than with states. That is, the model is in the form of probabilistic finite-state acceptor (Paz, 1971), in which \(P(s'|s, o) \) is the probability of the transition from state \(s' \) to state \(s \) on input \(o \).

In what follows, we will split \(P(s'|s, o) \) into \(P(s'|s) \) separately trained transition functions \(P_{s'}(s|o) = P(s'|s, o) \). Each of these functions is given by an exponential model, as described later in Section 2.3.

Next we discuss how to solve the state estimation problem in the new framework.

![Figure 1. (a) The dependency graph for a traditional HMM; (b) for our conditional maximum entropy Markov model.](image)
2.2 State Estimation from Observations

Despite the differences between the new model and HMMs, there is still an efficient dynamic programming solution to the classic problem of identifying the most likely state sequence given an observation sequence. The Viterbi algorithm for HMMs fills in a dynamic programming table with forward probabilities $\alpha_t(s)$, defined as the probability of producing the observation sequence up to time t and being in state s at time t. The recursive Viterbi step is

$$
\alpha_{t+1}(s) = \sum_{s' \in S} \alpha_t(s') \cdot P(s|s') \cdot P(o_{t+1}|s).
$$

In the new model, we redefine $\alpha_t(s)$ to be the probability of being in state s at time t given the observation sequence up to time t. The recursive Viterbi step is then

$$
\alpha_{t+1}(s) = \sum_{s' \in S} \alpha_t(s') \cdot P(s'|s) \cdot P(o_{t+1}|s).
$$

The corresponding backward probability $\beta_t(s)$ (used for Baum-Welch, which is discussed later) is the probability of starting from state s at time t given the observation sequence after time t. Its recursive step is simply

$$
\beta_t(s') = \sum_{s \in S} P(s'|s) \cdot \beta_{t+1}(s).$$

Space limitations prevent a full description here of Viterbi and Baum-Welch; see Rabiner (1989) for an excellent tutorial.

2.3 An Exponential Model for Transitions

The use of state-observation transition functions rather than the separate transition and observation functions in HMMs allows us to model transitions in terms of multiple, non-independent features of observations, which we believe to be the most valuable contribution of the present work. To do this, we turn to exponential models fit by maximum entropy.

Maximum entropy is a framework for estimating probability distributions from data. It is based on the principle that the best model for the data is the one that is consistent with certain constraints derived from the training data, but otherwise makes the fewest possible assumptions. In our probabilistic framework, the distribution with the “fewest possible assumptions” is that which is closest to the uniform distribution, that is, the one with the highest entropy.

Each constraint expresses some characteristic of the training data that should also be present in the learned distribution. Our constraints will be based on n binary features. Examples of such features might be “the observation is the word apple” or “the observation is a capitalized word” or, if the observations are whole lines of text at time, “the observation is a line of text that has two noun phrases.” As in other conditional maximum entropy models, features do not depend only on the observation but also on the outcome predicted by the function being modeled. Here, that function is the s'-specific transition function $P_{s'}(o|\alpha)$, and the outcome is the new current state s. Thus, each feature α gives a function $f_\alpha(o, s)$ of two arguments, a current observation o and a possible new current state s.

In this paper, each such α is a pair $\alpha = (b, s)$, where b is a binary feature of the observation alone and s is a destination state:

$$
f_{(b, s)}(o_t, s_t) = \begin{cases} 1 & \text{if } b(o_t) \text{ is true and } s = s_t \\ 0 & \text{otherwise}, \end{cases}
$$

The algorithm description that follows can be expressed in terms of the generic feature α without reference to this particular feature decomposition. Furthermore, we will suggest later that more general features may be useful.

The constraints we apply are that the expected value of each feature in the learned distribution be the same as its average on the training observation sequence $o_1 \cdots o_m$ (with corresponding state sequence $s_1 \cdots s_m$). Formally, for each previous state s' and feature α, the transition function $P_{s'}(o|\alpha)$ must have the property that

$$
\frac{1}{m_{s'}} \sum_{k=1}^{m_{s'}} f_\alpha(o_{t_k}, s_{t_k}) = \frac{1}{m_{s'}} \sum_{k=1}^{m_{s'}} \sum_{s \in S} P(s|o_{t_k}) f_\alpha(o_{t_k}, s),
$$

where $t_1, \ldots, t_{m_{s'}}$ are the time steps with $s_{t_k} = s'$, i.e., the time steps that involve the transition function $P_{s'}$.

The maximum entropy distribution that satisfies those constraints (Della Pietra, Della Pietra, & Lafferty, 1997) is unique, agrees with the maximum-likelihood distribution and has the exponential form:

$$
P_{s'}(s|\alpha) = \frac{1}{Z(\alpha, s')} \exp \left(\sum_\alpha \lambda_\alpha f_\alpha(o, s) \right),
$$

where the λ_α are parameters to be learned and $Z(\alpha, s')$ is the normalizing factor that makes the distribution sum to one across all next states s.

2.4 Parameter Estimation by Generalized Iterative Scaling

GIS (Darroch & Ratcliff, 1972) finds iteratively the λ_α values that form the maximum entropy solution for each transition function (Eq. 4). It requires that the values of the features sum to the same (arbitrary) constant C for each context (α, s). If this is not already true, we make it true by adding a new ordinal-valued “correction” feature f_x, where $x = n + 1$, such that $f_x(o, s) = C - \sum_{a} f_\alpha(o, s)$ and C is chosen to be large enough that $f_x(o, s) \geq 0$ for all o and s.
Each state destination state pairs—relevant to the transitions from

To summarize the overall MEMM training procedure, we

The application of GIS to learning the transition function

Table 1. An outline of the algorithm for estimating the parameters
of a Maximum-Entropy Markov model.

The application of GIS to learning the transition function

The procedure described above assumes that the state se-
quence of the training observation sequence is known; that
is, the states have to be predicted at test time but not train-
ing time. Often, it is useful to be able to train when the
state sequence is not known. For example, there may be
more than one state with the same label, and for a given
label sequence it may be ambiguous which state produced
which label instance.

We can use a variant of the Baum-Welch algorithm for this.
The E-step calculates state occupancies using the forward-
backward algorithm with the current transition functions.
The M-step uses the GIS procedure with feature frequen-
cies based on the E-step state occupancies to compute new
transition functions. This will maximize the likelihood of
the label sequence given the observations. Note that GIS
does not have to be run to convergence in each M-step;
not doing so would make this an example of Generalized
Expectation-Maximization (GEM), which is also guaran-
teed to converge to a local maximum.

Notice also that the same Baum-Welch variant can be
used with unlabeled or partially labeled training sequences
where, not only is the state unknown, but the label itself is
missing. These models could be trained with a combina-
tion of labeled and unlabeled data, which is often extremely
helpful when labeled data is sparse.

2.6 Variations

We have thus far described one particular method for max-
imum entropy Markov models, but there are several other
possibilities.

Factored state representation.

One difficulty that MEMMs share with HMMs is that there
are $O(|S|^2)$ transition parameters, making data sparseness
a serious problem as the number of states increases. Recall
that in our model observations are associated with transi-
tions instead of states. This has advantages for expressive
power, but comes at the cost of having many more param-
eters. For HMMs and related graphical models, tied pa-
rameters and factored state representations (Ghahramani &
Jordan, 1996; Kanazawa, Koller, & Russell, 1995) have
been used to alleviate this difficulty.

We can achieve a similar effect in MEMMs by not splitting
$P(s|s', o)$ into $|S|$ different functions $P_{s'}(s|o)$. Instead
we would use a distributed representation for the previous
state s' as a collection of features with weights set by max-
imum entropy, just as we have done for the observations.
For example, state features might include “we have already
consumed the start-time extraction field,” “we haven’t yet
exited the preamble of the document,” “the subject of the
previous sentence is female” or “the last paragraph was an answer.” One could also have second-order features linking observation and state features. With such a representation, information would be shared among different source states, reducing the number of parameters and thus improving generalization. Furthermore, this proposal does not require the difficult step of hand-crafting a parameter-tying scheme or graphical model for the state transition function as is required in HMMs and other graphical models.

Observations in states instead of transitions.

Rather than combining the transition and emission parameters in a single function, the transition probabilities could be represented as a traditional multinomial, \(P(s'|s) \), and the influence of the observations \(P(s|o) \) could be represented by a maximum-entropy exponential:

\[
P(s'|s, o) = P(s'|s) \frac{1}{Z(s,s')} \exp \left(\sum_{\alpha} \lambda_{\alpha} f_{\alpha}(o,s) \right).
\]

This method of “correcting” a simple multinomial or prior by adding extra features with maximum entropy has been used previously in various statistical language modeling problems. These include the combination of traditional trigrams with “trigger word” features (Rosenfeld, 1994) and the combination of arbitrary features of sentences with trigram models (Chen & Rosenfeld, 1999).

Note here that the observation and the previous state are treated as independent evidence for the current state. This approach would put the observations back in the states instead of the transitions. It would reduce the number of parameters, and thus might be useful when training data is especially sparse.

An Environmental Model for Reinforcement Learning.

The transition function can also include an action, \(a \), resulting in \(P(s'|s, a, o) \)—a model suitable for representing the environment of a reinforcement agent. The dependency on the action could be modeled either with separate functions for each action, or with a factored representation of actions in terms of arbitrary overlapping features, such as “steer left,” “beep,” and “raise arm.” Certain particular actions, states and observations with strong interactions can be modeled as features that represent their conjunction.

3. Experimental Results

We tested our method on a collection of 38 files belonging to 7 Usenet multi-part FAQs downloaded from the Internet. All documents in this data set are organized according to the same basic structure: each contains a header, which

3See http://www.cs.cmu.edu/~mccallum/faqdata.
degrees. Note also that the usefulness of a particular feature, such as `indented`, depends on the formatting conventions of a particular FAQ.

The results presented in this section are meant to answer the question of how well can a MEMM trained on a single manually labeled document label novel documents formatted according to the same conventions. Our experiments treat each group of documents belonging to the same FAQ as a separate dataset. We train a model on a single document in such a group and test it on the remaining documents in the group. In other words, we perform “leave-n-minus-1-out” evaluation. Each group of n documents yields n(n − 1) results. Scores are the average performance across all FAQs in the collection.

Given a sequence of lines (a test document) and a MEMM we use the Viterbi algorithm to compute the most likely state sequence. We consider three metrics in evaluating the predicted sequences. The first is the co-occurrence agreement probability (COAP), proposed by Beeferman, Berger, and Lafferty (1999):

\[
\Pr_{\mu}(\text{act, pred}) = \sum_{i,j} D_{\mu}(i,j) \delta_{\text{act}}(i,j) \overline{\delta_{\text{pred}}(i,j)}
\]

where \(D_{\mu}(i,j) \) is a probability distribution over the set of distances between lines; \(\delta_{\text{act}}(i,j) \) is 1 if lines \(i \) and \(j \) are in the same actual segment, and 0 otherwise; \(\delta_{\text{pred}}(i,j) \) is a similar indicator function for the predicted segmentation; and \(\overline{\text{XNOR}} \) is the XNOR function. This metric gives the empirical probability that the actual and predicted segmentations agree on the placement of two lines drawn according to \(D_{\mu} \). In computing the COAP we define a segment to be any unbroken sequence of lines with the same label. In Beeferman et al. (1999), \(D_{\mu} \) is an exponential distribution depending on \(\mu \), a parameter calculated on features of the dataset, such as average document length. For simplicity, we set \(D_{\mu} \) to a uniform distribution of width 10. In other words, our COAP measures the probability that any two lines within 10 lines of each other are placed correctly by the predicted segmentation.

In constrast with the COAP, (which reflects the probability that segment boundaries are properly identified by the learner, but ignores the labels assigned to the segments themselves), the other two metrics only count as correct those predicted segments that have the right labels. A segment is counted as correct if it has the same boundaries and label (e.g., `question`) as an actual segment. The segmentation precision (SP) is the number of correctly identified segments divided by the number of segments predicted. The segmentation recall (SR) is the number of correctly identified segments divided by the number of actual segments.

Table 4 shows the performance of the four models on FAQ data. It is clear from the table that `MEMM` is the best of the methods tested. What is more, the results support two claims that underpin our research into this problem. First,
representing lines in terms of features salient to the problem at hand is far more effective than a token-level representation, which is the essential difference between TokenHMM and FeatureHMM. FeatureHMM does as well as it does (surprisingly well) because it has access to meaningful features of the segmentation problem.

The performance of ME-Stateless show that it is not possible to classify lines unambiguously from the features alone. Our second claim is that structural regularities such as “if you have left the header, do not classify any further lines as header lines” are critical. Markov models provide a convenient way to model such regularities. For the purposes of segmentation, the results suggest that it is more important to model structure than to have access to line features.

The scores of the three Markov model methods on the COAP metric indicate that they all do reasonably well at segmenting FAQs into their constituent parts. In particular, FeatureHMM segments almost as well as MEMM. The more stringent metrics, SP and SR, which punish any misclassified line in a predicted segment, hint at the main shortcoming of the two non-maximum entropy Markov models: they occasionally interpolate bad predictions into otherwise correctly handled segments.

The precision (SP score) of MEMM has significant practical implications. If the results of the segmentation are to be used in an automatic system, then precision is critical. In the case of FAQs, at least one such system, a question-answering system, has been described in the literature (Burke, Hammond, Kulyukin, Lytinen, & To-muro, 1997). Whereas the segmentation returned by FeatureHMM is probably not of high enough quality for such a use—not without manual intervention or rule-based post-processing—MEMM segmentation might be.

4. Related Work

A wide range of machine-learning techniques have been used in information extraction and text segmentation. In this paper we focus exclusively on techniques based on probabilistic models. Non-probabilistic methods such as memory-based techniques (Argamon, Dagan, & Krymolowski, 1998), transformation-based learning (Brill, 1995), and Winnow-based combinations of linear classifiers (Roth, 1998), do not give normalized scores to each decision that can be combined into overall scores for decision sequences. Therefore, they do not support the standard dynamic programming methods for finding the best segmentation (Viterbi), and must thus resort to sub-optimal methods to label the observation sequence. Furthermore, they do not support hidden-variable reestimation (Baum-Welch) methods, which are required for missing or incomplete training labels.

Exponential models derived by maximum entropy have been applied with considerable success to many natural language tasks, including language modeling for speech recognition (Rosenfeld, 1994; Chen & Rosenfeld, 1999), segmentation of newswire stories (Beeferman et al., 1999), part-of-speech tagging, prepositional phrase attachment and parsing (Ratnaparkhi, 1998).

HMMs have also been successful in similar natural-language tasks, including part-of-speech tagging (Kupiec, 1992), named-entity recognition (Bikel et al., 1999) and information extraction (Leek, 1997; Freitag & McCallum, 1999).

However, we know of no previous general method that combines the rich state representation of Markov models with the flexible feature combination of exponential models. The MENE named-entity recognizer (Borthwick, Sterling, Agichtein, & Grishman, 1998) uses an exponential model to label each word with a label indicating the position of the word in a labeled-entity class (start, inside, end or singleton), but the conditioning information does not include the previous label, unlike our model. Therefore, it is closer to our ME-Stateless model. It is possible that its inferior performance compared to an HMM-based named-entity recognizer (Bikel et al., 1999) may have similar causes to the corresponding weakness of ME-Stateless relative to FeatureHMM in our experiments—the lack of representation of sequential dependencies.

The model closest to our proposal is the part-of-speech tagger of Ratnaparkhi (1998). He starts with a maximum-entropy model of the joint distribution of word sequences and the corresponding part-of-speech tags, but the practical form of his model is a conditional Markov model whose states encode the past two parts-of-speech and features of the previous two and next two words. While our model splits the transition functions for different source states, Ratnaparkhi’s combines all of them into a single exponential model, which is more complex but may handle sparse data better. Note, however, that it does not allow for arbitrary state-transition structures and the relatively more expressive context representation they allow.

Nevertheless, the most direct inspiration for our model was the work on Markov processes on curves (MPCs) (Saul & Rahim, 1999), which defines a class of conditional Markov models mapping (continuous) segments of a trajectory in acoustic space to states representing phonetic distinctions. Our model is a simpler, discrete time version of the same observation-conditional Markovian architecture.

5. Conclusions and Further Work

We have shown that it is possible to combine the advantages of HMMs and maximum-entropy models into a gen-
eral model that allows state transitions to depend on non-independent features of the sequence under analysis. The new model performs considerably better than either HMMs or stateless maximum-entropy models on the task of segmenting FAQs into questions and answers, and we believe that the same technique can be advantageously applied to many other text-related applications, for example named entity recognition.

We believe that a distributed state representation and non-fully connected topologies may facilitate applications to more demanding tasks, such as information extraction with large vocabulary and many features, as well as automatic feature generation and selection following Della Pietra et al. (1997). We also believe it would be worth investigating training with partially labeled data using the combination of Baum-Welch and GIS discussed earlier. In the longer term, the combination of maximum entropy and conditional parameterization may be useful for a wider range of graphical models than finite-state networks.

Acknowledgements

Many thanks to John Lafferty for helpful discussions on training with unknown state and on associating observations with states instead of transitions, to Kamal Nigam for help with GIS, and to Michael Collins for guidance on related work.

References

